Short description: none The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. ## Contents * 1 Integrals involving only logarithmic functions * 2 Integrals involving logarithmic and power functions * 3 Integrals involving logarithmic and trigonometric functions * 4 Integrals involving logarithmic and exponential functions * 5 n consecutive integrations * 6 See also * 7 References ## Integrals involving only logarithmic functions [math]\displaystyle{ \int\log_a x\,dx = x\log_a x - \frac{x}{\ln a} = \frac{x\ln x - x}{\ln a} }[/math] [math]\displaystyle{ \int\ln(ax)\,dx = x\ln(ax) - x }[/math] [math]\displaystyle{ \int\ln (ax + b)\,dx = \frac{(ax+b)\ln(ax+b) - (ax+b)}{a} }[/math] [math]\displaystyle{ \int (\ln x)^2\,dx = x(\ln x)^2 - 2x\ln x + 2x }[/math] [math]\displaystyle{ \int (\ln x)^n\,dx = x\sum^{n}_{k=0}(-1)^{n-k} \frac{n!}{k!}(\ln x)^k }[/math] [math]\displaystyle{ \int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{k=2}\frac{(\ln x)^k}{k\cdot k!} }[/math] [math]\displaystyle{ \int \frac{dx}{\ln x} = \operatorname{li}(x) }[/math], the logarithmic integral. [math]\displaystyle{ \int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)} }[/math] [math]\displaystyle{ \int \ln f(x)\,dx = x\ln f(x) - \int x\frac{f'(x)}{f(x)}\,dx \qquad\mbox{(for differentiable } f(x) \gt 0\mbox{)} }[/math] ## Integrals involving logarithmic and power functions [math]\displaystyle{ \int x^m\ln x\,dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq -1\mbox{)} }[/math] [math]\displaystyle{ \int x^m (\ln x)^n\,dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx \qquad\mbox{(for }m\neq -1\mbox{)} }[/math] [math]\displaystyle{ \int \frac{(\ln x)^n\,dx}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(for }n\neq -1\mbox{)} }[/math] [math]\displaystyle{ \int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)} }[/math] [math]\displaystyle{ \int \frac{(\ln x)^n\,dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m\neq 1\mbox{)} }[/math] [math]\displaystyle{ \int \frac{x^m\,dx}{(\ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)} }[/math] [math]\displaystyle{ \int \frac{dx}{x \ln x} = \ln \left|\ln x\right| }[/math] [math]\displaystyle{ \int \frac{dx}{x \ln x \ln \ln x} = \ln \left|\ln \left|\ln x\right| \right| }[/math], etc. [math]\displaystyle{ \int \frac{dx}{x\ln \ln x} = \operatorname{li}(\ln x) }[/math] [math]\displaystyle{ \int \frac{dx}{x^n\ln x} = \ln \left|\ln x\right| + \sum^\infty_{k=1} (-1)^k\frac{(n-1)^k(\ln x)^k}{k\cdot k!} }[/math] [math]\displaystyle{ \int \frac{dx}{x(\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)} }[/math] [math]\displaystyle{ \int \ln(x^2+a^2)\,dx = x\ln(x^2+a^2)-2x+2a\tan^{-1} \frac{x}{a} }[/math] [math]\displaystyle{ \int \frac{x}{x^2+a^2}\ln(x^2+a^2)\,dx = \frac{1}{4} \ln^2(x^2+a^2) }[/math] ## Integrals involving logarithmic and trigonometric functions [math]\displaystyle{ \int \sin (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x)) }[/math] [math]\displaystyle{ \int \cos (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x)) }[/math] ## Integrals involving logarithmic and exponential functions [math]\displaystyle{ \int e^x \left(x \ln x - x - \frac{1}{x}\right)\,dx = e^x (x \ln x - x - \ln x) }[/math] [math]\displaystyle{ \int \frac{1}{e^x} \left( \frac{1}{x}-\ln x \right)\,dx = \frac{\ln x}{e^x} }[/math] [math]\displaystyle{ \int e^x \left( \frac{1}{\ln x}- \frac{1}{x(\ln x)^2} \right)\,dx = \frac{e^x}{\ln x} }[/math] [math]\displaystyle{ \int{e^{x}\left( f\left( x \right) + f'\left( x \right) \right)\text{dx}} = e^{x}f\left( x \right) + C }[/math] [math]\displaystyle{ \int {e^{x}\left( f\left( x \right) - \left( - 1 \right)^{n}\frac{d^{n}f\left( x \right)}{dx^{n}} \right)\,dx} = e^{x}\sum_{k = 1}^{n}{\left( - 1 \right)^{k - 1}\frac{d^{k - 1}f\left( x \right)}{dx^{k - 1}}} + C }[/math] (if [math]\displaystyle{ n }[/math] is a positive integer) [math]\displaystyle{ \int {e^{- x}\left( f\left( x \right) - \frac{d^{n}f\left( x \right)}{dx^{n}} \right)\, dx} = - e^{- x}\sum_{k = 1}^{n}\frac{d^{k - 1}f\left( x \right)}{dx^{k - 1}} + C }[/math] (if [math]\displaystyle{ n }[/math] is a positive integer) these generalizations were given by Toyesh Prakash Sharma. ## n consecutive integrations For [math]\displaystyle{ n }[/math] consecutive integrations, the formula [math]\displaystyle{ \int\ln x\,dx = x(\ln x - 1) +C_{0} }[/math] generalizes to [math]\displaystyle{ \int\dotsi\int\ln x\,dx\dotsm dx = \frac{x^{n}}{n!}\left(\ln\,x-\sum_{k=1}^{n}\frac{1}{k}\right)+ \sum_{k=0}^{n-1} C_{k} \frac{x^{k}}{k!} }[/math] ## See also * List of mathematical identities * Lists of mathematics topics - None ## References * Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964. A few integrals are listed on page 69. * Toyesh Prakash Sharma,"https://www.isroset.org/pdf_paper_view.php?paper_id=2214&7-ISROSET-IJSRMSS-05130.pdf * v * t * e Lists of integrals * Rational functions * Irrational functions * Trigonometric functions * Inverse trigonometric functions * Hyperbolic functions * Inverse hyperbolic functions * Exponential functions * Logarithmic functions * Gaussian functions *[v]: View this template *[t]: Discuss this template *[e]: Edit this template