The context tree weighting method (CTW) is a lossless compression and prediction algorithm by Willems, Shtarkov & Tjalkens 1995. The CTW algorithm is among the very few such algorithms that offer both theoretical guarantees and good practical performance (see, e.g. Begleiter, El-Yaniv & Yona 2004). The CTW algorithm is an “ensemble method,” mixing the predictions of many underlying variable order Markov models, where each such model is constructed using zero-order conditional probability estimators. ## References * Willems; Shtarkov; Tjalkens (1995), "The Context-Tree Weighting Method: Basic Properties", IEEE Transactions on Information Theory (IEEE Transactions on Information Theory) 41 (3): 653–664, doi:10.1109/18.382012, https://ieeexplore.ieee.org/document/382012 * Willems; Shtarkov; Tjalkens (1997), Reflections on "The Context-Tree Weighting Method: Basic Properties", 47, IEEE Information Theory Society Newsletter, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.1872&rep=rep1&type=pdf * Begleiter; El-Yaniv; Yona (2004), On Prediction Using Variable Order Markov Models, 22, Journal of Artificial Intelligence Research: Journal of Artificial Intelligence Research, pp. 385–421, https://www.jair.org/index.php/jair/article/view/10394 ## External links * Relevant CTW papers and implementations * CTW Official Homepage * v * t * e Data compression methods Lossless| | Entropy type| * Arithmetic * Asymmetric numeral systems * Golomb * Huffman * Adaptive * Canonical * Modified * Range * Shannon * Shannon–Fano * Shannon–Fano–Elias * Tunstall * Unary * Universal * Exp-Golomb * Fibonacci * Gamma * Levenshtein | Dictionary type| * Byte pair encoding * Lempel–Ziv * Brotli * DEFLATE * LZ4 * LZFSE * LZJB * LZMA * LZO * LZRW * LZS * LZSS * LZW * LZWL * LZX * Snappy * Zstandard Other types| * BWT * CTW * Delta * DMC * DPCM * LDCT * MTF * PAQ * PPM * RLE Lossy| | Transform type| * Discrete cosine transform * DCT * MDCT * DST * FFT * Wavelet * Daubechies * DWT * SPIHT | Predictive type| * DPCM * ADPCM * LPC * ACELP * CELP * LAR * LSP * WLPC * Motion * Compensation * Estimation * Vector * Psychoacoustic Audio| | Concepts| * Bit rate * ABR * CBR * VBR * Companding * Convolution * Dynamic range * Latency * Nyquist–Shannon theorem * Sampling * Sound quality * Speech coding * Sub-band coding | Codec parts| * A-law * μ-law * DPCM * ADPCM * FT * FFT * LPC * ACELP * CELP * LAR * LSP * WLPC * MDCT * Psychoacoustic model Image| | Concepts| * Chroma subsampling * Coding tree unit * Color space * Compression artifact * Image resolution * Macroblock * Pixel * PSNR * Quantization * Standard test image | Methods| * Chain code * DCT * DEFLATE * Fractal * KLT * LP * RLE * Wavelet * Daubechies * DWT * EZW * SPIHT Video| | Concepts| * Bit rate * ABR * CBR * VBR * Display resolution * Frame * Frame rate * Frame types * Interlace * Video characteristics * Video quality | Codec parts| * DCT * DPCM * Deblocking filter * Lapped transform * Motion * Compensation * Estimation * Vector * Wavelet * Daubechies * DWT Theory| * Entropy * Information theory * Timeline * Kolmogorov complexity * Quantization * Rate–distortion * Redundancy * Compression formats * Compression software (codecs) 0.00 (0 votes) Original source: https://en.wikipedia.org/wiki/Context tree weighting. Read more | Retrieved from "https://handwiki.org/wiki/index.php?title=Context_tree_weighting&oldid=2311117" *[v]: View this template *[t]: Discuss this template *[e]: Edit this template