In mathematics, the Chern–Simons forms are certain secondary characteristic classes.[1] The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.[2] ## Contents * 1 Definition * 2 Application to physics * 3 See also * 4 References * 5 Further reading ## Definition Given a manifold and a Lie algebra valued 1-form [math]\displaystyle{ \mathbf{A} }[/math] over it, we can define a family of p-forms:[3] In one dimension, the Chern–Simons 1-form is given by [math]\displaystyle{ \operatorname{Tr} [ \mathbf{A} ]. }[/math] In three dimensions, the Chern–Simons 3-form is given by [math]\displaystyle{ \operatorname{Tr} \left[ \mathbf{F} \wedge \mathbf{A}-\frac{1}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \right] = \operatorname{Tr} \left[ d\mathbf{A} \wedge \mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\right]. }[/math] In five dimensions, the Chern–Simons 5-form is given by [math]\displaystyle{ \begin{align} & \operatorname{Tr} \left[ \mathbf{F}\wedge\mathbf{F} \wedge \mathbf{A}-\frac{1}{2} \mathbf{F} \wedge\mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} +\frac{1}{10} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge\mathbf{A} \right] \\\\[6pt] = {} & \operatorname{Tr} \left[ d\mathbf{A}\wedge d\mathbf{A} \wedge \mathbf{A} + \frac{3}{2} d\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} +\frac{3}{5} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} \right] \end{align} }[/math] where the curvature F is defined as [math]\displaystyle{ \mathbf{F} = d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}. }[/math] The general Chern–Simons form [math]\displaystyle{ \omega_{2k-1} }[/math] is defined in such a way that [math]\displaystyle{ d\omega_{2k-1}= \operatorname{Tr}(F^k), }[/math] where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection [math]\displaystyle{ \mathbf{A} }[/math]. In general, the Chern–Simons p-form is defined for any odd p.[4] ## Application to physics In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons form.[5] In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer. ## See also * Chern–Weil homomorphism * Chiral anomaly * Topological quantum field theory * Jones polynomial ## References 1. ↑ Freed, Daniel (January 15, 2009). "Remarks on the Chern–Simons forms". https://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01243-9/S0273-0979-09-01243-9.pdf. 2. ↑ Chern, Shiing-Shen; Tian, G.; Li, Peter (1996) (in en). A Mathematician and His Mathematical Work: Selected Papers of S.S. Chern. World Scientific. ISBN 978-981-02-2385-4. https://books.google.com/books?id=uOfSa0sfJr0C&q=Characteristic+Forms+and+Geometric+Invariants&pg=PA363. 3. ↑ "Chern-Simons form in nLab". https://ncatlab.org/nlab/show/Chern-Simons+form. 4. ↑ Moore, Greg (June 7, 2019). "Introduction To Chern-Simons Theories". http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf. 5. ↑ Schwartz, A. S. (1978). "The partition function of degenerate quadratic functional and Ray-Singer invariants". Letters in Mathematical Physics 2 (3): 247–252. doi:10.1007/BF00406412. ## Further reading * Chern, S.-S.; Simons, J. (1974). "Characteristic forms and geometric invariants". Annals of Mathematics. Second Series 99 (1): 48–69. doi:10.2307/1971013. * Bertlmann, Reinhold A. (2001). "Chern–Simons form, homotopy operator and anomaly". Anomalies in Quantum Field Theory (Revised ed.). Clarendon Press. pp. 321–341. ISBN 0-19-850762-3. https://books.google.com/books?id=FC_DRRUHFXEC&pg=PA321. * v * t * e String theory Background| * Strings * History of string theory * First superstring revolution * Second superstring revolution * String theory landscape Theory| * Nambu–Goto action * Polyakov action * Bosonic string theory * Superstring theory * Type I string * Type II string * Type IIA string * Type IIB string * Heterotic string * N=2 superstring * F-theory * String field theory * Matrix string theory * Non-critical string theory * Non-linear sigma model * Tachyon condensation * RNS formalism * GS formalism String duality| * T-duality * S-duality * U-duality * Montonen–Olive duality Particles and fields| * Graviton * Dilaton * Tachyon * Ramond–Ramond field * Kalb–Ramond field * Magnetic monopole * Dual graviton * Dual photon Branes| * D-brane * NS5-brane * M2-brane * M5-brane * S-brane * Black brane * Black holes * Black string * Brane cosmology * Quiver diagram * Hanany–Witten transition Conformal field theory| * Virasoro algebra * Mirror symmetry * Conformal anomaly * Conformal algebra * Superconformal algebra * Vertex operator algebra * Loop algebra * Kac–Moody algebra * Wess–Zumino–Witten model Gauge theory| * Anomalies * Instantons * Chern–Simons form * Bogomol'nyi–Prasad–Sommerfield bound * Exceptional Lie groups (G2, F4, E6, E7, E8) * ADE classification * Dirac string * p-form electrodynamics Geometry| * Kaluza–Klein theory * Compactification * Why 10 dimensions? * Kähler manifold * Ricci-flat manifold * Calabi–Yau manifold * Hyperkähler manifold * K3 surface * G2 manifold * Spin(7)-manifold * Generalized complex manifold * Orbifold * Conifold * Orientifold * Moduli space * Hořava–Witten domain wall * K-theory * Twisted K-theory Supersymmetry| * Supergravity * Superspace * Lie superalgebra * Lie supergroup Holography| * Holographic principle * AdS/CFT correspondence M-theory| * Matrix theory * Introduction to M-theory String theorists| * Aganagić * Arkani-Hamed * Atiyah * Banks * Berenstein * Bousso * Cleaver * Curtright * Dijkgraaf * Distler * Douglas * Duff * Ferrara * Fischler * Friedan * Gates * Gliozzi * Gopakumar * Green * Greene * Gross * Gubser * Gukov * Guth * Hanson * Harvey * Hořava * Gibbons * Kachru * Kaku * Kallosh * Kaluza * Kapustin * Klebanov * Knizhnik * Kontsevich * Klein * Linde * Maldacena * Mandelstam * Marolf * Martinec * Minwalla * Moore * Motl * Mukhi * Myers * Nanopoulos * Naqvi * Năstase * Nekrasov * Neveu * Nielsen * van Nieuwenhuizen * Novikov * Olive * Ooguri * Ovrut * Polchinski * Polyakov * Rajaraman * Ramond * Randall * Randjbar-Daemi * Roček * Rohm * Scherk * Schwarz * Seiberg * Sen * Shenker * Siegel * Silverstein * Sơn * Staudacher * Steinhardt * Strominger * Sundrum * Susskind * 't Hooft * Townsend * Trivedi * Turok * Vafa * Veneziano * Verlinde * Verlinde * Wess * Witten * Yau * Yoneya * Zamolodchikov * Zamolodchikov * Zaslow * Zumino * Zwiebach 0.00 (0 votes) Original source: https://en.wikipedia.org/wiki/Chern–Simons form. Read more | Retrieved from "https://handwiki.org/wiki/index.php?title=Chern–Simons_form&oldid=17467" *[v]: View this template *[t]: Discuss this template *[e]: Edit this template