Cyclotruncated 8-simplex honeycomb | |
---|---|
(No image) | |
Type | Uniform honeycomb |
Family | Cyclotruncated simplectic honeycomb |
Schläfli symbol | t0,1{3[9]} |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8-face types | {37} ![]() t1,2{37} 30px, t2,3{37} 30px t3,4{37} ![]() |
Vertex figure | Elongated 7-simplex antiprism |
Symmetry | [math]\displaystyle{ {\tilde{A}}_8 }[/math]×2, 3[9] |
Properties | vertex-transitive |
In eight-dimensional Euclidean geometry, the cyclotruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, truncated 8-simplex, bitruncated 8-simplex, tritruncated 8-simplex, and quadritruncated 8-simplex facets. These facet types occur in proportions of 2:2:2:2:1 respectively in the whole honeycomb.
It can be constructed by nine sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 7-simplex honeycomb divisions on each hyperplane.
This honeycomb is one of 45 unique uniform honeycombs[1] constructed by the [math]\displaystyle{ {\tilde{A}}_8 }[/math] Coxeter group. The symmetry can be multiplied by the ring symmetry of the Coxeter diagrams:
A8 honeycombs | ||||
---|---|---|---|---|
Enneagon symmetry |
Symmetry | Extended diagram |
Extended group |
Honeycombs |
a1 | [3[9]] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[math]\displaystyle{ {\tilde{A}}_8 }[/math] |
|
i2 | [[3[9]]] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[math]\displaystyle{ {\tilde{A}}_8 }[/math]×2 |
|
i6 | [3[3[9]]] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[math]\displaystyle{ {\tilde{A}}_8 }[/math]×6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
r18 | [9[3[9]]] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[math]\displaystyle{ {\tilde{A}}_8 }[/math]×18 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Regular and uniform honeycombs in 8-space:
Fundamental convex regular and uniform honeycombs in dimensions 2-9
| ||||||
---|---|---|---|---|---|---|
Space | Family | [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math] |
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |
![]() | Original source: https://en.wikipedia.org/wiki/ Cyclotruncated 8-simplex honeycomb.
Read more |