Formal power series with coefficients tending to 0 In algebra, the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity.[1] Over a non-archimedean complete field, the ring is also called a Tate algebra. Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial. ## Contents * 1 Definition * 2 Tate algebra * 3 Results * 4 Notes * 5 References * 6 See also * 7 External links ## Definition[edit] Let A be a linearly topologized ring, separated and complete and { I λ } {\displaystyle \\{I_{\lambda }\\}} the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over A / I λ {\displaystyle A/I_{\lambda }} : A ⟨ x 1 , … , x n ⟩ = lim <- λ ⁡ A / I λ [ x 1 , … , x n ] {\displaystyle A\langle x_{1},\dots ,x_{n}\rangle =\varprojlim _{\lambda }A/I_{\lambda }[x_{1},\dots ,x_{n}]} .[2][3] In other words, it is the completion of the polynomial ring A [ x 1 , … , x n ] {\displaystyle A[x_{1},\dots ,x_{n}]} with respect to the filtration { I λ [ x 1 , … , x n ] } {\displaystyle \\{I_{\lambda }[x_{1},\dots ,x_{n}]\\}} . Sometimes this ring of restricted power series is also denoted by A { x 1 , … , x n } {\displaystyle A\\{x_{1},\dots ,x_{n}\\}} . Clearly, the ring A ⟨ x 1 , … , x n ⟩ {\displaystyle A\langle x_{1},\dots ,x_{n}\rangle } can be identified with the subring of the formal power series ring A [ [ x 1 , … , x n ] ] {\displaystyle A[[x_{1},\dots ,x_{n}]]} that consists of series ∑ c α x α {\displaystyle \sum c_{\alpha }x^{\alpha }} with coefficients c α -> 0 {\displaystyle c_{\alpha }\to 0} ; i.e., each I λ {\displaystyle I_{\lambda }} contains all but finitely many coefficients c α {\displaystyle c_{\alpha }} . Also, the ring satisfies (and in fact is characterized by) the universal property:[4] for (1) each continuous ring homomorphism A -> B {\displaystyle A\to B} to a linearly topologized ring B {\displaystyle B} , separated and complete and (2) each elements b 1 , … , b n {\displaystyle b_{1},\dots ,b_{n}} in B {\displaystyle B} , there exists a unique continuous ring homomorphism A ⟨ x 1 , … , x n ⟩ -> B , x i ↦ b i {\displaystyle A\langle x_{1},\dots ,x_{n}\rangle \to B,\,x_{i}\mapsto b_{i}} extending A -> B {\displaystyle A\to B} . ## Tate algebra[edit] In rigid analysis, when the base ring A is the valuation ring of a complete non-archimedean field ( K , | ⋅ | ) {\displaystyle (K,|\cdot |)} , the ring of restricted power series tensored with K {\displaystyle K} , T n = K ⟨ ξ 1 , … ξ n ⟩ = A ⟨ ξ 1 , … , ξ n ⟩ ⊗ A K {\displaystyle T_{n}=K\langle \xi _{1},\dots \xi _{n}\rangle =A\langle \xi _{1},\dots ,\xi _{n}\rangle \otimes _{A}K} is called a Tate algebra, named for John Tate.[5] It is equivalently the subring of formal power series k [ [ ξ 1 , … , ξ n ] ] {\displaystyle k[[\xi _{1},\dots ,\xi _{n}]]} which consists of series convergent on o k ¯ n {\displaystyle {\mathfrak {o}}_{\overline {k}}^{n}} , where o k ¯ := { x ∈ k ¯ : | x | ≤ 1 } {\displaystyle {\mathfrak {o}}_{\overline {k}}:=\\{x\in {\overline {k}}:|x|\leq 1\\}} is the valuation ring in the algebraic closure k ¯ {\displaystyle {\overline {k}}} . The maximal spectrum of T n {\displaystyle T_{n}} is then a rigid-analytic space that models an affine space in rigid geometry. Define the Gauss norm of f = ∑ a α ξ α {\displaystyle f=\sum a_{\alpha }\xi ^{\alpha }} in T n {\displaystyle T_{n}} by ‖ f ‖ = max α | a α | . {\displaystyle \|f\|=\max _{\alpha }|a_{\alpha }|.} This makes T n {\displaystyle T_{n}} a Banach algebra over k; i.e., a normed algebra that is complete as a metric space. With this norm, any ideal I {\displaystyle I} of T n {\displaystyle T_{n}} is closed[6] and thus, if I is radical, the quotient T n / I {\displaystyle T_{n}/I} is also a (reduced) Banach algebra called an affinoid algebra. Some key results are: * (Weierstrass division) Let g ∈ T n {\displaystyle g\in T_{n}} be a ξ n {\displaystyle \xi _{n}} -distinguished series of order s; i.e., g = ∑ ν = 0 ∞ g ν ξ n ν {\displaystyle g=\sum _{\nu =0}^{\infty }g_{\nu }\xi _{n}^{\nu }} where g ν ∈ T n − 1 {\displaystyle g_{\nu }\in T_{n-1}} , g s {\displaystyle g_{s}} is a unit element and | g s | = ‖ g ‖ > | g v | {\displaystyle |g_{s}|=\|g\|>|g_{v}|} for ν > s {\displaystyle \nu >s} .[7] Then for each f ∈ T n {\displaystyle f\in T_{n}} , there exist a unique q ∈ T n {\displaystyle q\in T_{n}} and a unique polynomial r ∈ T n − 1 [ ξ n ] {\displaystyle r\in T_{n-1}[\xi _{n}]} of degree < s {\displaystyle k := A / m {\displaystyle \varphi :A\to k:=A/{\mathfrak {m}}} the quotient map. Given a F {\displaystyle F} in A ⟨ ξ ⟩ {\displaystyle A\langle \xi \rangle } , if φ ( F ) = g h {\displaystyle \varphi (F)=gh} for some monic polynomial g ∈ k [ ξ ] {\displaystyle g\in k[\xi ]} and a restricted power series h ∈ k ⟨ ξ ⟩ {\displaystyle h\in k\langle \xi \rangle } such that g , h {\displaystyle g,h} generate the unit ideal of k ⟨ ξ ⟩ {\displaystyle k\langle \xi \rangle } , then there exist G {\displaystyle G} in A [ ξ ] {\displaystyle A[\xi ]} and H {\displaystyle H} in A ⟨ ξ ⟩ {\displaystyle A\langle \xi \rangle } such that F = G H , φ ( G ) = g , φ ( H ) = h {\displaystyle F=GH,\,\varphi (G)=g,\varphi (H)=h} .[13] ## Notes[edit] 1. ^ Stacks Project, Tag 0AKZ. 2. ^ Grothendieck & Dieudonné 1960, Ch. 0, § 7.5.1. 3. ^ Bourbaki 2006, Ch. III, § 4. Definition 2 and Proposition 3. 4. ^ Grothendieck & Dieudonné 1960, Ch. 0, § 7.5.3. 5. ^ Fujiwara & Kato 2018, Ch 0, just after Proposition 9.3. 6. ^ Bosch 2014, § 2.3. Corollary 8 7. ^ Bosch 2014, § 2.2. Definition 6. 8. ^ Bosch 2014, § 2.2. Theorem 8. 9. ^ Bosch 2014, § 2.2. Corollary 9. 10. ^ Bosch 2014, § 2.2. Corollary 11. 11. ^ Bosch 2014, § 2.2. Proposition 14, Proposition 15, Proposition 17. 12. ^ Bosch 2014, § 2.2. Proposition 16. 13. ^ Bourbaki 2006, Ch. III, § 4. Theorem 1. ## References[edit] * Bourbaki, N. (2006). Algèbre commutative: Chapitres 1 à 4. Springer Berlin Heidelberg. ISBN 9783540339373. * Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083. * Bosch, Siegfried; Güntzer, Ulrich; Remmert, Reinhold (1984), "Chapter 5", Non-archimedean analysis, Springer * Bosch, Siegfried (2014), Lectures on Formal and Rigid Geometry, ISBN 9783319044170 * Fujiwara, Kazuhiro; Kato, Fumiharu (2018), Foundations of Rigid Geometry I ## See also[edit] * Weierstrass preparation theorem ## External links[edit] * https://ncatlab.org/nlab/show/restricted+formal+power+series * http://math.stanford.edu/~conrad/papers/aws.pdf * https://web.archive.org/web/20060916051553/http://www-math.mit.edu/~kedlaya//18.727/tate-algebras.pdf