FK506 binding protein 12-rapamycin associated protein 1 File:PBB Protein FRAP1 image.jpg PDB rendering based on 1aue. | Available structures PDB | Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB | List of PDB id codes 1aue​, 1fap​, 1nsg​, 2fap​, 2gaq​, 3fap​, 4fap​ Identifiers Symbols| FRAP1 ; FLJ44809; FRAP; FRAP2; MTOR; RAFT1; RAPT1 External IDs| Template:OMIM5 Template:MGI HomoloGene: 3637 | Gene ontology Molecular function | Template:GNF GO Template:GNF GO Template:GNF GO Template:GNF GO Cellular component | Template:GNF GO Template:GNF GO Template:GNF GO Biological process | Template:GNF GO Template:GNF GO Template:GNF GO Template:GNF GO Template:GNF GO Template:GNF GO RNA expression pattern File:PBB GE FRAP1 202288 at tn.png More reference expression data Orthologs Template:GNF Ortholog box Species| Human| Mouse Entrez| n/a| n/a Ensembl| n/a| n/a UniProt| n/a| n/a RefSeq (mRNA)| n/a| n/a RefSeq (protein)| n/a| n/a Location (UCSC)| n/a| n/a PubMed search| n/a| n/a The mammalian target of rapamycin, commonly known as mTOR, is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription.[1][2] ## Contents * 1 Function * 2 Complexes * 2.1 mTORC1 * 2.2 mTORC2 * 3 mTOR inhibitors as therapies * 4 References * 5 Further reading * 6 External links ## Function[edit | edit source] File:MTOR-pathway-betz.jpg mTOR signaling pathway.[1] Current research indicates that mTOR integrates the input from multiple upstream pathways, including insulin, growth factors (such as IGF-1 and IGF-2), and mitogens.[1] mTOR also functions as a sensor of cellular nutrient and energy levels and redox status.[3] The dysregulation of the mTOR pathway is implicated as a contributing factor to various human disease processes, especially various types of cancer.[2] Rapamycin is a bacterial natural product that can inhibit mTOR through association with its intracellular receptor FKBP12.[4][5] The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR.[5] mTOR has been shown to function as the catalytic subunit of two distinct molecular complexes in cells.[6] ## Complexes[edit | edit source] ### mTORC1[edit | edit source] mTOR Complex 1 (mTORC1) is composed of mTOR, regulatory associated protein of mTOR (Raptor), and mammalian LST8/G-protein β-subunit like protein (mLST8/GβL).[7][8] This complex possesses the classic features of mTOR by functioning as a nutrient/energy/redox sensor and controlling protein synthesis.[7][1] The activity of this complex is stimulated by insulin, growth factors, serum, phosphatidic acid, amino acids (particularly leucine), and oxidative stress.[7][9] mTORC1 is inhibited by low nutrient levels, growth factor deprivation, reductive stress, caffeine, rapamycin, farnesylthiosalicylic acid (FTS) and curcumin.[7][10][2] The two best characterized targets of mTORC1 are p70-S6 Kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1).[1] mTORC1 phosphorylates S6K1 on at least two residues, with the most critical modification occurring on threonine389.[11][12] This event stimulates the subsequent phosphorylation of S6K1 by PDK1.[12][13] Active S6K1 can in turn stimulate the initiation of protein synthesis through activation of S6 Ribosomal protein (a component of the ribosome) and other components of the translational machinery.[14] S6K1 can also participate in a positive feedback loop with mTORC1 by phosphorylating mTOR's negative regulatory domain at threonine2446 and serine2448; events which appear to be stimulatory in regards to mTOR activity.[15][16] mTORC1 has been shown to phosphorylate at least four residues of 4E-BP1 in a hierarchical manner.[17][4][18] Non-phosphorylated 4E-BP1 binds tightly to the translation initiation factor eIF4E, preventing it from binding to 5'-capped mRNAs and recruiting them to the ribosomal initiation complex.[19] Upon phosphorylation by mTORC1, 4E-BP1 releases eIF4E, allowing it to perform its function.[19] The activity of mTORC1 appears to be regulated through a dynamic interaction between mTOR and Raptor, one which is mediated by GβL.[7][8] Raptor and mTOR share a strong N-terminal interaction and a weaker C-terminal interaction near mTOR's kinase domain.[7] When stimulatory signals are sensed, such as high nutrient/energy levels, the mTOR-Raptor C-terminal interaction is weakened and possibly completely lost, allowing mTOR kinase activity to be turned on. When stimulatory signals are withdrawn, such as low nutrient levels, the mTOR-Raptor C-terminal interaction is strengthened, essentially shutting off kinase function of mTOR .[7] ### mTORC2[edit | edit source] mTOR Complex 2 (mTORC2) is composed of mTOR, rapamycin-insensitive companion of mTOR (Rictor), GβL, and mammalian stress-activated protein kinase interacting protein 1 (mSIN1).[20][21] mTORC2 has been shown to function as an important regulator of the cytoskeleton through its stimulation of F-actin stress fibers, paxillin, RhoA, Rac1, Cdc42, and protein kinase C α (PKCα).[21] However, unexpectedly mTORC2 also functions as the elusive "PDK2." mTORC2 phosphorylates the serine/threonine protein kinase Akt/PKB at serine473, an event which stimulates Akt phosphorylation at threonine308 by PDK1 and leads to full Akt activation.[22][23] mTORC2 appears to be regulated by insulin, growth factors, serum, and nutrient levels.[20] Originally, mTORC2 was identified as a rapamycin-insensitive entity, as acute exposure to rapamycin did not affect mTORC2 activity or Akt phosphorylation. It has also been shown that curcumin can inhibit the mTORC2-mediated phosphorylation of Akt/PKB at serine473, with subsequent loss of PDK1-mediated phosphorylation at threonine308.[2] ## mTOR inhibitors as therapies[edit | edit source] mTOR inhibitors are already used in the treatment of transplant rejection . They are also beginning to be used in the treatment of cancer.[24] ## References[edit | edit source] 1. ↑ 1.0 1.1 1.2 1.3 Hay N, Sonenberg N (2004). "Upstream and downstream of mTOR". Genes Dev. 18 (16): 1926–45. PMID 15314020. 2. ↑ 2.0 2.1 2.2 2.3 Beevers C, Li F, Liu L, Huang S (2006). "Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells". Int J Cancer. 119 (4): 757–64. PMID 16550606.CS1 maint: Multiple names: authors list (link) 3. ↑ Tokunaga C, Yoshino K, Yonezawa K (2004). "mTOR integrates amino acid- and energy-sensing pathways". Biochem Biophys Res Commun. 313 (2): 443–6. PMID 14684182.CS1 maint: Multiple names: authors list (link) 4. ↑ 4.0 4.1 Huang S, Houghton P (2001). "Mechanisms of resistance to rapamycins". Drug Resist Updat. 4 (6): 378–91. PMID 12030785. 5. ↑ 5.0 5.1 Huang S, Bjornsti M, Houghton P (2003). "Rapamycins: mechanism of action and cellular resistance". Cancer Biol Ther. 2 (3): 222–32. PMID 12878853.CS1 maint: Multiple names: authors list (link) 6. ↑ Wullschleger S, Loewith R, Hall M (2006). "TOR signaling in growth and metabolism". Cell. 124 (3): 471–84. PMID 16469695.CS1 maint: Multiple names: authors list (link) 7. ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Kim D, Sarbassov D, Ali S, King J, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D (2002). "mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery". Cell. 110 (2): 163–75. PMID 12150925.CS1 maint: Multiple names: authors list (link) 8. ↑ 8.0 8.1 Kim D, Sarbassov D, Ali S, Latek R, Guntur K, Erdjument-Bromage H, Tempst P, Sabatini D (2003). "GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR". Mol Cell. 11 (4): 895–904. PMID 12718876.CS1 maint: Multiple names: authors list (link) 9. ↑ Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001). "Phosphatidic acid-mediated mitogenic activation of mTOR signaling". Science. 294 (5548): 1942–5. PMID 11729323.CS1 maint: Multiple names: authors list (link) 10. ↑ McMahon L, Yue W, Santen R, Lawrence J (2005). "Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex". Mol Endocrinol. 19 (1): 175–83. PMID 15459249.CS1 maint: Multiple names: authors list (link) 11. ↑ Saitoh M, Pullen N, Brennan P, Cantrell D, Dennis P, Thomas G (2002). "Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site". J Biol Chem. 277 (22): 20104–12. PMID 11914378.CS1 maint: Multiple names: authors list (link) 12. ↑ 12.0 12.1 Pullen N, Thomas G (1997). "The modular phosphorylation and activation of p70s6k". FEBS Lett. 410 (1): 78–82. PMID 9247127. 13. ↑ Pullen N, Dennis P, Andjelkovic M, Dufner A, Kozma S, Hemmings B, Thomas G (1998). "Phosphorylation and activation of p70s6k by PDK1". Science. 279 (5351): 707–10. PMID 9445476.CS1 maint: Multiple names: authors list (link) 14. ↑ Peterson R, Schreiber S (1998). "Translation control: connecting mitogens and the ribosome". Curr Biol. 8 (7): R248–50. PMID 9545190. 15. ↑ Chiang G, Abraham R (2005). "Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase". J Biol Chem. 280 (27): 25485–90. PMID 15899889. 16. ↑ Holz M, Blenis J (2005). "Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase". J Biol Chem. 280 (28): 26089–93. PMID 15905173. 17. ↑ Gingras A, Gygi S, Raught B, Polakiewicz R, Abraham R, Hoekstra M, Aebersold R, Sonenberg N (1999). "Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism". Genes Dev. 13 (11): 1422–37. PMID 10364159.CS1 maint: Multiple names: authors list (link) 18. ↑ Mothe-Satney I, Brunn G, McMahon L, Capaldo C, Abraham R, Lawrence J (2000). "Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies". J Biol Chem. 275 (43): 33836–43. PMID 10942774.CS1 maint: Multiple names: authors list (link) 19. ↑ 19.0 19.1 Pause A, Belsham G, Gingras A, Donzé O, Lin T, Lawrence J, Sonenberg N (1994). "Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function". Nature. 371 (6500): 762–7. PMID 7935836.CS1 maint: Multiple names: authors list (link) 20. ↑ 20.0 20.1 Frias M, Thoreen C, Jaffe J, Schroder W, Sculley T, Carr S, Sabatini D (2006). "mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s". Curr Biol. 16 (18): 1865–70. PMID 16919458.CS1 maint: Multiple names: authors list (link) 21. ↑ 21.0 21.1 Sarbassov D, Ali S, Kim D, Guertin D, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D (2004). "Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton". Curr Biol. 14 (14): 1296–302. PMID 15268862.CS1 maint: Multiple names: authors list (link) 22. ↑ Sarbassov D, Guertin D, Ali S, Sabatini D (2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex". Science. 307 (5712): 1098–101. PMID 15718470.CS1 maint: Multiple names: authors list (link) 23. ↑ Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter G, Holmes A, Gaffney P, Reese C, McCormick F, Tempst P, Coadwell J, Hawkins P (1998). "Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B". Science. 279 (5351): 710–4. PMID 9445477.CS1 maint: Multiple names: authors list (link) 24. ↑ ""AKT, ILGF & Wnt pathways" at healthvalue.net". Retrieved 2007-07-12. ## Further reading[edit | edit source] * Huang S, Houghton PJ (2002). "Mechanisms of resistance to rapamycins". Drug Resist. Updat. 4 (6): 378–91. doi:10.1054/drup.2002.0227. PMID 12030785. * Harris TE, Lawrence JC (2004). "TOR signaling". Sci. STKE. 2003 (212): re15. doi:10.1126/stke.2122003re15. PMID 14668532. * Easton JB, Houghton PJ (2005). "Therapeutic potential of target of rapamycin inhibitors". Expert Opin. Ther. Targets. 8 (6): 551–64. doi:10.1517/14728222.8.6.551. PMID 15584862. * Deldicque L, Theisen D, Francaux M (2005). "Regulation of mTOR by amino acids and resistance exercise in skeletal muscle". Eur. J. Appl. Physiol. 94 (1–2): 1–10. doi:10.1007/s00421-004-1255-6. PMID 15702344.CS1 maint: Multiple names: authors list (link) * Weimbs T (2007). "Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair?". Cell Cycle. 5 (21): 2425–9. PMID 17102641. * Sun SY, Fu H, Khuri FR (2007). "Targeting mTOR signaling for lung cancer therapy". Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 1 (2): 109–11. PMID 17409838.CS1 maint: Multiple names: authors list (link) * Abraham RT, Gibbons JJ (2007). "The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy". Clin. Cancer Res. 13 (11): 3109–14. doi:10.1158/1078-0432.CCR-06-2798. PMID 17545512. ## External links[edit | edit source] * mTOR+protein at the US National Library of Medicine Medical Subject Headings (MeSH) * v * t * e Kinases: Serine/threonine-specific protein kinases (EC 2.7.11-12) Serine/threonine-specific protein kinases (EC 2.7.11.1-EC 2.7.11.20) | Non-specific serine/threonine protein kinases (EC 2.7.11.1)| * LATS1 * LATS2 * MAST1 * MAST2 * STK38 * STK38L * CIT * ROCK1 * SGK * SGK2 * SGK3 * Protein kinase B * AKT1 * AKT2 * AKT3 * Ataxia telangiectasia mutated * mTOR * EIF-2 kinases * PKR * HRI * EIF2AK3 * EIF2AK4 * Wee1 * WEE1 | Pyruvate dehydrogenase kinase (EC 2.7.11.2)| * PDK1 * PDK2 * PDK3 * PDK4 Dephospho-(reductase kinase) kinase (EC 2.7.11.3)| * AMP-activated protein kinase α * PRKAA1 * PRKAA2 * β * PRKAB1 * PRKAB2 * γ * PRKAG1 * PRKAG2 * PRKAG3 3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring) kinase (EC 2.7.11.4)| * BCKDK * BCKDHA * BCKDHB (isocitrate dehydrogenase (NADP+)) kinase (EC 2.7.11.5)| * IDH2 * IDH3A * IDH3B * IDH3G (tyrosine 3-monooxygenase) kinase (EC 2.7.11.6)| * STK4 Myosin-heavy-chain kinase (EC 2.7.11.7)| * Aurora kinase * Aurora A kinase * Aurora B kinase * Aurora C kinase Fas-activated serine/threonine kinase (EC 2.7.11.8)| * FASTK * STK10 Goodpasture-antigen-binding protein kinase (EC 2.7.11.9)| * - IκB kinase (EC 2.7.11.10)| * CHUK * IKK2 * TBK1 * IKBKE * IKBKG * IKBKAP cAMP-dependent protein kinase (EC 2.7.11.11)| * Protein kinase A * PRKACG * PRKACB * PRKACA * PRKY cGMP-dependent protein kinase (EC 2.7.11.12)| * Protein kinase G * PRKG1 Protein kinase C (EC 2.7.11.13)| * Protein kinase C * Protein kinase Cζ * PKC alpha * PRKCB1 * PRKCD * PRKCE * PRKCH * PRKCG * PRKCI * PRKCQ * Protein kinase N1 * PKN2 * PKN3 Rhodopsin kinase (EC 2.7.11.14)| * Rhodopsin kinase Beta adrenergic receptor kinase (EC 2.7.11.15)| * Beta adrenergic receptor kinase * Beta adrenergic receptor kinase-2 G-protein coupled receptor kinases (EC 2.7.11.16)| * GRK4 * GRK5 * GRK6 Ca2+/calmodulin-dependent (EC 2.7.11.17)| * BRSK2 * CAMK1 * CAMK1A * CAMK1B * CAMK1D * CAMK1G * CAMK2 * CAMK2A * CAMK2B * CAMK2D * CAMK2G * CAMK4 * MLCK * CASK * CHEK1 * CHEK2 * DAPK1 * DAPK2 * DAPK3 * STK11 * MAPKAPK2 * MAPKAPK3 * MAPKAPK5 * MARK1 * MARK2 * MARK3 * MARK4 * MELK * MKNK1 * MKNK2 * NUAK1 * NUAK2 * OBSCN * PASK * PHKG1 * PHKG2 * PIM1 * PIM2 * PKD1 * PRKD2 * PRKD3 * PSKH1 * SNF1LK2 * KIAA0999 * STK40 * SNF1LK * SNRK * SPEG * TSSK2 * Kalirin * TRIB1 * TRIB2 * TRIB3 * TRIO * Titin * DCLK1 Myosin light-chain kinase (EC 2.7.11.18)| * MYLK * MYLK2 * MYLK3 * MYLK4 Phosphorylase kinase (EC 2.7.11.19)| * PHKA1 * PHKA2 * PHKB * PHKG1 * PHKG2 Elongation factor 2 kinase (EC 2.7.11.20)| * EEF2K * STK19 Polo kinase (EC 2.7.11.21)| * PLK1 * PLK2 * PLK3 * PLK4 Serine/threonine-specific protein kinases (EC 2.7.11.21-EC 2.7.11.30) | Polo kinase (EC 2.7.11.21)| * PLK1 * PLK2 * PLK3 * PLK4 | Cyclin-dependent kinase (EC 2.7.11.22)| * CDK1 * CDK2 * CDKL2 * CDK3 * CDK4 * CDK5 * CDKL5 * CDK6 * CDK7 * CDK8 * CDK9 * CDK10 * CDK12 * CDC2L5 * PCTK1 * PCTK2 * PCTK3 * PFTK1 * CDC2L1 (RNA-polymerase)-subunit kinase (EC 2.7.11.23)| * RPS6KA5 * RPS6KA4 * P70S6 kinase * P70-S6 Kinase 1 * RPS6KB2 * RPS6KA2 * RPS6KA3 * RPS6KA1 * RPS6KC1 Mitogen-activated protein kinase (EC 2.7.11.24)| * Extracellular signal-regulated * MAPK1 * MAPK3 * MAPK4 * MAPK6 * MAPK7 * MAPK12 * MAPK15 * C-Jun N-terminal * MAPK8 * MAPK9 * MAPK10 * P38 mitogen-activated protein * MAPK11 * MAPK13 * MAPK14 MAP3K (EC 2.7.11.25)| * MAP kinase kinase kinases * MAP3K1 * MAP3K2 * MAP3K3 * MAP3K4 * MAP3K5 * MAP3K6 * MAP3K7 * MAP3K8 * RAFs * ARAF * BRAF * KSR1 * KSR2 * MLKs * MAP3K12 * MAP3K13 * MAP3K9 * MAP3K10 * MAP3K11 * MAP3K7 * ZAK * CDC7 * MAP3K14 Tau-protein kinase (EC 2.7.11.26)| * TPK1 * TTK * GSK-3 (acetyl-CoA carboxylase) kinase (EC 2.7.11.27)| * - Tropomyosin kinase (EC 2.7.11.28)| * - Low-density-lipoprotein receptor kinase (EC 2.7.11.29)| * - Receptor protein serine/threonine kinase (EC 2.7.11.30)| * Bone morphogenetic protein receptors * BMPR1 * BMPR1A * BMPR1B * BMPR2 * ACVR1 * ACVR1B * ACVR1C * ACVR2A * ACVR2B * ACVRL1 * Anti-Müllerian hormone receptor Dual-specificity kinases (EC 2.7.12) | MAP2K| * MAP2K1 * MAP2K2 * MAP2K3 * MAP2K4 * MAP2K5 * MAP2K6 * MAP2K7 | de:MTOR it:MTOR Template:WikiDoc Sources *[v]: View this template *[t]: Discuss this template *[e]: Edit this template