Part of a series on statistics Probability theory * Probability axioms * Probability space * Sample space * Elementary event * Event * Random variable * Probability measure * Complementary event * Joint probability * Marginal probability * Conditional probability * Independence * Conditional independence * Law of total probability * Law of large numbers * Bayes' theorem * Boole's inequality * Venn diagram * Tree diagram * v * t * e Pairwise error probability is the error probability that for a transmitted signal ([math]\displaystyle{ X }[/math]) its corresponding but distorted version ([math]\displaystyle{ \widehat{X} }[/math]) will be received. This type of probability is called ″pair-wise error probability″ because the probability exists with a pair of signal vectors in a signal constellation.[1] It's mainly used in communication systems.[1] ## Contents * 1 Expansion of the definition * 2 Closed form computation * 3 See also * 4 References * 5 Further reading ## Expansion of the definition In general, the received signal is a distorted version of the transmitted signal. Thus, we introduce the symbol error probability, which is the probability [math]\displaystyle{ P(e) }[/math] that the demodulator will make a wrong estimation [math]\displaystyle{ (\widehat{X}) }[/math] of the transmitted symbol [math]\displaystyle{ (X) }[/math] based on the received symbol, which is defined as follows: [math]\displaystyle{ P(e) \triangleq \frac{1}{M} \sum_{x} \mathbb{P} (X \neq \widehat{X}|X) }[/math] where M is the size of signal constellation. The pairwise error probability [math]\displaystyle{ P(X \to \widehat{X}) }[/math] is defined as the probability that, when [math]\displaystyle{ X }[/math] is transmitted, [math]\displaystyle{ \widehat{X} }[/math] is received. [math]\displaystyle{ P(e|X) }[/math] can be expressed as the probability that at least one [math]\displaystyle{ \widehat{X} \neq X }[/math] is closer than [math]\displaystyle{ X }[/math] to [math]\displaystyle{ Y }[/math]. Using the upper bound to the probability of a union of events, it can be written: [math]\displaystyle{ P(e|X)\le\sum_{\widehat{X}\neq X} P(X \to \widehat{X}) }[/math] Finally: [math]\displaystyle{ P(e) = \tfrac{1}{M} \sum_{X \in S} P(e|X) \leq \tfrac{1}{M} \sum_{X \in S}\sum_{\widehat{X}\neq X} P(X \to \widehat{X}) }[/math] ## Closed form computation For the simple case of the additive white Gaussian noise (AWGN) channel: [math]\displaystyle{ Y = X + Z, Z_i \sim \mathcal{N}(0,\tfrac{N_0}{2} I_n) \,\\! }[/math] The PEP can be computed in closed form as follows: [math]\displaystyle{ \begin{align} P(X \to \widehat{X}) & = \mathbb{P}(||Y-\widehat{X}||^2 \lt ||Y-X||^2|X) \\\ & = \mathbb{P}(||(X+Z)-\widehat{X}||^2 \lt ||(X+Z)-X||^2) \\\ & = \mathbb{P}(||(X - \widehat{X})+Z||^2 \lt ||Z||^2) \\\ & = \mathbb{P}(||X- \widehat{X}||^2 +||Z||^2 +2(Z,X-\widehat{X})\lt ||Z||^2) \\\ & = \mathbb{P}(2(Z,X-\widehat{X})\lt -||X- \widehat{X}||^2)\\\ & = \mathbb{P}((Z,X-\widehat{X})\lt -||X- \widehat{X}||^2/2) \end{align} }[/math] [math]\displaystyle{ (Z,X-\widehat{X}) }[/math] is a Gaussian random variable with mean 0 and variance [math]\displaystyle{ N_0||X- \widehat{X}||^2/2 }[/math]. For a zero mean, variance [math]\displaystyle{ \sigma^2=1 }[/math] Gaussian random variable: [math]\displaystyle{ P(X \gt x) = Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{+\infty} e^-\tfrac{t^2}{2}dt }[/math] Hence, [math]\displaystyle{ \begin{align} P(X \to \widehat{X}) & =Q \bigg(\tfrac{\tfrac{||X- \widehat{X}||^2}{2}}{\sqrt{\tfrac{N_0||X- \widehat{X}||^2}{2}}}\bigg)= Q \bigg(\tfrac{||X- \widehat{X}||^2}{2}.\sqrt{\tfrac{2}{N_0||X- \widehat{X}||^2}}\bigg) \\\ & = Q \bigg(\tfrac{||X- \widehat{X}||}{\sqrt{2N_0}}\bigg) \end{align} }[/math] ## See also * Signal Processing * Telecommunication * Electrical engineering * Random variable ## References 1. ↑ 1.0 1.1 Stüber, Gordon L.. Principles of mobile communication (3rd ed.). New York: Springer. pp. 281. ISBN 1461403642. ## Further reading * Prasad, 5th IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC '94) The Hague, the Netherlands, September 18–22, 1994 ; ICCC Regional Meeting on Wireless Computer Networks (WCN), the Hague, the Netherlands, September 21–23, 1994 ; edited by Jos H. Weber, Jens C. Arnbak, and Ramjee (1994). Wireless networks : catching the mobile future : proceedings. Amsterdam: IOS Press. pp. 564–575. ISBN 9051991932. * Simon, Marvin K.; Alouini, Mohamed-Slim (2005). Digital Communication over Fading Channels (2. ed.). Hoboken: John Wiley & Sons. ISBN 0471715239. 0.00 (0 votes) Original source: https://en.wikipedia.org/wiki/Pairwise error probability. Read more | Retrieved from "https://handwiki.org/wiki/index.php?title=Pairwise_error_probability&oldid=34005" *[v]: View this template *[t]: Discuss this template *[e]: Edit this template