The Tversky index, named after Amos Tversky,[1] is an asymmetric similarity measure on sets that compares a variant to a prototype. The Tversky index can be seen as a generalization of the Sørensen–Dice coefficient and the Tanimoto coefficient (aka Jaccard index). For sets X and Y the Tversky index is a number between 0 and 1 given by
[math]\displaystyle{ S(X, Y) = \frac{| X \cap Y |}{| X \cap Y | + \alpha | X \setminus Y | + \beta | Y \setminus X |} }[/math]
Here, [math]\displaystyle{ X \setminus Y }[/math] denotes the relative complement of Y in X.
Further, [math]\displaystyle{ \alpha, \beta \ge 0 }[/math] are parameters of the Tversky index. Setting [math]\displaystyle{ \alpha = \beta = 1 }[/math] produces the Tanimoto coefficient; setting [math]\displaystyle{ \alpha = \beta = 0.5 }[/math] produces the Sørensen–Dice coefficient.
If we consider X to be the prototype and Y to be the variant, then [math]\displaystyle{ \alpha }[/math] corresponds to the weight of the prototype and [math]\displaystyle{ \beta }[/math] corresponds to the weight of the variant. Tversky measures with [math]\displaystyle{ \alpha + \beta = 1 }[/math] are of special interest.[2]
Because of the inherent asymmetry, the Tversky index does not meet the criteria for a similarity metric. However, if symmetry is needed a variant of the original formulation has been proposed using max and min functions[3] .
[math]\displaystyle{ S(X,Y)=\frac{| X \cap Y |}{| X \cap Y |+\beta\left(\alpha a+(1-\alpha)b\right)} }[/math]
[math]\displaystyle{ a=\min\left(|X \setminus Y|,|Y \setminus X|\right) }[/math],
[math]\displaystyle{ b=\max\left(|X \setminus Y|,|Y \setminus X|\right) }[/math],
This formulation also re-arranges parameters [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math]. Thus, [math]\displaystyle{ \alpha }[/math] controls the balance between [math]\displaystyle{ |X \setminus Y| }[/math] and [math]\displaystyle{ |Y \setminus X| }[/math] in the denominator. Similarly, [math]\displaystyle{ \beta }[/math] controls the effect of the symmetric difference [math]\displaystyle{ |X\,\triangle\,Y\,| }[/math] versus [math]\displaystyle{ | X \cap Y | }[/math] in the denominator.
![]() | Original source: https://en.wikipedia.org/wiki/Tversky index.
Read more |