Two numbers $ \sigma $ and $ \tau $ connected with rectangular Cartesian coordinates by the formulas $$ x ^ {2} = \frac{( \sigma + a ^ {2} ) ( \tau + a ^ {2} ) }{a ^ {2} - b ^ {2} } , $$ $$ y ^ {2} = \frac{( \sigma + b ^ {2} ) ( \tau + b ^ {2} ) }{b ^ {2} - a ^ {2} } , $$ where $ - a ^ {2} < \tau < \- b ^ {2} < \sigma < \infty $. Figure: e035440a The coordinate lines are (see Fig.): confocal ellipses ( $ \sigma = \textrm{ const } $) and hyperbolas ( $ \tau = \textrm{ const } $) with foci ( $ - \sqrt {a ^ {2} - b ^ {2} } , 0 $) and ( $ \sqrt {a ^ {2} - b ^ {2} } , 0 $). The system of elliptic coordinates is orthogonal. To every pair of numbers $ \sigma $ and $ \tau $ correspond four points, one in each quadrant of the $ xy $- plane. The Lamé coefficients are $$ L _ \sigma = \frac{1}{2} \sqrt { \frac{\sigma - \tau }{( \sigma + a ^ {2} ) ( \tau + b ^ {2} ) } } , $$ $$ L _ \tau = \frac{1}{2} \sqrt { \frac{\tau - \sigma }{( \sigma - a ^ {2} ) ( \tau + b ^ {2} ) } } . $$ In elliptic coordinates the Laplace equation allows separation of variables. Degenerate elliptic coordinates are two numbers $ \widetilde \sigma $ and $ \widetilde \tau $ connected with $ \sigma $ and $ \tau $ by the formulas (for $ a = 1 $, $ b = 0 $): $$ \sigma = \sinh ^ {2} \widetilde \sigma ,\ \ \tau = - \sin ^ {2} \widetilde \tau , $$ and with Cartesian coordinates $ x $ and $ y $ by $$ x = \cosh \widetilde \sigma \cos \widetilde \tau ,\ \ y = \sinh \widetilde \sigma \sin \widetilde \tau , $$ where $ 0 \leq \widetilde \sigma < \infty $ and $ 0 \leq \widetilde \tau < 2 \pi $. Occasionally these coordinates are also called elliptic. The Lamé coefficients are: $$ L _ {\widetilde \sigma } = L _ {\widetilde \tau } = \ \sqrt {\cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau } . $$ The area element is: $$ d s = ( \cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau ) d \widetilde \sigma d \widetilde \tau . $$ The Laplace operator is: $$ \Delta \phi = \frac{1}{\cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau } \left ( \frac{\partial ^ {2} \phi }{\partial \widetilde \sigma ^ {2} } \+ \frac{\partial ^ {2} \phi }{\partial \widetilde \tau ^ {2} } \right ) . $$ #### Comments[edit] #### References[edit] [a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |