Common side effects include headache, ringing in the ears, trouble seeing, and sweating.[2] More severe side effects include deafness, low blood platelets, and an irregular heartbeat.[2] Use can make one more prone to sunburn.[2] While it is unclear if use during pregnancy causes harm to the baby, treating malaria during pregnancy with quinine when appropriate is still recommended.[2] Quinine is an alkaloid, a naturally occurring chemical compound.[2] How it works as a medicine is not entirely clear.[2]
As of 2006, quinine is no longer recommended by the World Health Organization (WHO) as a first-line treatment for malaria, because there are other substances that are equally effective with fewer side effects. They recommend that it be used only when artemisinins are not available.[13][14][15][16]
The defined daily dose is 1.5 g (by mouth or by injection).[3] The dose for malaria in those who weigh more than 50 kg is 600 mg three times per day for a week.[1] In those less than 50 kg the dose is 10 mg/kg three times per day for a week.[1] The dose is the same for the sulfate, hydrochloride, and dihydrochloride salts of quinine.[1] While, 10 mg of these salts equals 14 mg of quinine bisulfate.[1]
Quinine can cause hemolysis in G6PD deficiency (an inherited deficiency), but this risk is small and the physician should not hesitate to use quinine in people with G6PD deficiency when there is no alternative.[22]
The most common adverse effects involve a group of symptoms called cinchonism, which can include headache, vasodilation and sweating, nausea, tinnitus, hearing impairment, vertigo or dizziness, blurred vision, and disturbance in color perception.[2][20][22] More severe cinchonism includes vomiting, diarrhea, abdominal pain, deafness, blindness, and disturbances in heart rhythms.[22] Cinchonism is much less common when quinine is given by mouth, but oral quinine is not well tolerated (quinine is exceedingly bitter and many people will vomit after ingesting quinine tablets).[2] Other drugs, such as Fansidar (sulfadoxine with pyrimethamine) or Malarone (proguanil with atovaquone), are often used when oral therapy is required. Quinine ethyl carbonate is tasteless and odourless,[23] but is available commercially only in Japan. Blood glucose, electrolyte and cardiac monitoring are not necessary when quinine is given by mouth.
The UV absorption of quinine peaks around 350 nm (in UVA). Fluorescent emission peaks at around 460 nm (bright blue/cyan hue).[27] Quinine is highly fluorescent (quantum yield ~0.58) in 0.1 Msulfuric acid solution.[28][29]
Suitable modification of strictosidine leads to an aldehyde. Hydrolysis and decarboxylation would initially remove one carbon from the iridoid portion and produce corynantheal. Then the tryptamine side-chain were cleaved adjacent to the nitrogen, and this nitrogen was then bonded to the acetaldehyde function to yield cinchonaminal. Ring opening in the indole heterocyclic ring could generate new amine and keto functions. The new quinoline heterocycle would then be formed by combining this amine with the aldehyde produced in the tryptamine side-chain cleavage, giving cinchonidinone. For the last step, hydroxylation and methylation gives quinine.[32][33]
Cinchona trees remain the only economically practical source of quinine. However, under wartime pressure during World War II, research towards its synthetic production was undertaken. A formal chemical synthesis was accomplished in 1944 by American chemists R.B. Woodward and W.E. Doering.[34]
Since then, several more efficient quinine total syntheses have been achieved,[35] but none of them can compete in economic terms with isolation of the alkaloid from natural sources. The first synthetic organicdye, mauveine, was discovered by William Henry Perkin in 1856 while he was attempting to synthesize quinine.
Quinine was used as a muscle relaxant by the Quechua people, who are indigenous to Peru, Bolivia and Ecuador, to halt shivering due to low temperatures.[36] The Quechua would mix the ground bark of cinchona trees with sweetened water to offset the bark's bitter taste, thus producing something similar to tonic water.[37]
Spanish Jesuit missionaries were the first to bring cinchona to Europe. The Spanish had observed the Quechua's use of cinchona and were aware of the medicinal properties of cinchona bark by the 1570s or earlier: Nicolás Monardes (1571) and Juan Fragoso (1572) both described a tree, which was subsequently identified as the cinchona tree, whose bark was used to produce a drink to treat diarrhea.[38] Quinine has been used in unextracted form by Europeans since at least the early 17th century.[39]
It was first used to treat malaria in Rome in 1631. A popular story of how it was brought to Europe by the Countess of Chinchon was debunked by medical historian Alec Haggis around 1941.[40] During the 17th century, malaria was endemic to the swamps and marshes surrounding the city of Rome. It had caused the deaths of several popes, many cardinals and countless common Roman citizens. Most of the Catholic priests trained in Rome had seen malaria victims and were familiar with the shivering brought on by the febrile phase of the disease.
The Jesuit brother Agostino Salumbrino (1564–1642),[41] an apothecary by training who lived in Lima (now in present-day Peru), observed the Quechua using the bark of the cinchona tree to treat such shivering. While its effect in treating malaria (and malaria-induced shivering) was unrelated to its effect in controlling shivering from rigors, it was a successful medicine against malaria. At the first opportunity, Salumbrino sent a small quantity to Rome for testing as a malaria treatment.[42] In the years that followed, cinchona bark, known as Jesuit's bark or Peruvian bark, became one of the most valuable commodities shipped from Peru to Europe. When King Charles II was cured of malaria at the end of the 17th Century with quinine, it became popular in London.[43] It remained the antimalarial drug of choice until the 1940s, when other drugs took over.[44]
The form of quinine most effective in treating malaria was found by Charles Marie de La Condamine in 1737.[45][46] In 1820, French researchers Pierre Joseph Pelletier and Joseph Bienaimé Caventou first isolated quinine from the bark of a tree in the genus Cinchona – probably Cinchona officinalis – and subsequently named the substance.[47] The name was derived from the original Quechua (Inca) word for the cinchona tree bark, quina or quina-quina, which means "bark of bark" or "holy bark". Prior to 1820, the bark was dried, ground to a fine powder, and mixed into a liquid (commonly wine) in order to be drunk. Large-scale use of quinine as a malaria prophylaxis started around 1850. In 1853 Paul Briquet published a brief history and discussion of the literature on "quinquina".[48]
Quinine played a significant role in the colonization of Africa by Europeans. The availability of quinine for treatment had been said to be the prime reason Africa ceased to be known as the "white man's grave". A historian said, "it was quinine's efficacy that gave colonists fresh opportunities to swarm into the Gold Coast, Nigeria and other parts of west Africa".[49]
To maintain their monopoly on cinchona bark, Peru and surrounding countries began outlawing the export of cinchona seeds and saplings in the early 19th century. The Dutch government persisted in its attempts to smuggle the seeds, and by the late 19th century the Dutch grew the plants in Indonesian plantations. Soon they became the main suppliers of the tree. In 1913 they set up the Kina Bureau, a cartel of cinchona producers charged with controlling price and production.[50] By the 1930s Dutch plantations in Java were producing 22 million pounds of cinchona bark, or 97% of the world's quinine production.[49] U.S. attempts to prosecute the Kina Bureau proved unsuccessful.[50]
During World War II, Allied powers were cut off from their supply of quinine when Germany conquered the Netherlands, and Japan controlled the Philippines and Indonesia. The US had obtained four million cinchona seeds from the Philippines and began operating cinchona plantations in Costa Rica. Additionally, they began harvesting wild cinchona bark during the Cinchona Missions. Such supplies came too late. Tens of thousands of US troops in Africa and the South Pacific died of malaria due to the lack of quinine.[49] Despite controlling the supply, the Japanese did not make effective use of quinine, and thousands of Japanese troops in the southwest Pacific died as a result.[51][52][53][54]
Quinine remained the antimalarial drug of choice until after World War II. Since then, other drugs that have fewer side effects, such as chloroquine, have largely replaced it.[55]
Bromo Quinine were brand namecold tablets containing quinine, manufactured by Grove Laboratories. They were first marketed in 1889 and available until at least the 1960s.[56]
Conducting research in central Missouri, Dr. John S. Sappington independently developed an anti-malaria pill from quinine. Sappington began importing cinchona bark from Peru in 1820. In 1832, using quinine derived from the cinchona bark, Sappington developed a pill to treat a variety of fevers, such as scarlet fever, yellow fever, and influenza in addition to malaria. These illnesses were widespread in the Missouri and Mississippi valleys. He manufactured and sold "Dr. Sappington's Anti-Fever Pills" across Missouri. Demand became so great that within three years, Dr. Sappington founded a company known as Sappington and Sons to sell his pills nationwide.[57]
Quinine is a basic amine and is usually provided as a salt. Various existing preparations include the hydrochloride, dihydrochloride, sulfate, bisulfate and gluconate. In the United States, quinine sulfate is commercially available in 324-mg tablets under the brand name Qualaquin.
All quinine salts may be given orally or intravenously (IV); quinine gluconate may also be given intramuscularly (IM) or rectally (PR).[60][61] The main problem with the rectal route is that the dose can be expelled before it is completely absorbed; in practice, this is corrected by giving a further half dose. No injectable preparation of quinine is licensed in the US; quinidine is used instead.[62][63]
According to tradition, because of the bitter taste of anti-malarial quinine tonic, British colonials in India mixed it with gin to make it more palatable, thus creating the gin and tonic cocktail, which is still popular today.[65]
In France, quinine is an ingredient of an apéritif known as quinquina, or "Cap Corse," and the wine-based apéritifDubonnet. In Spain, quinine (also known as "Peruvian bark" for its origin from the native cinchona tree) is sometimes blended into sweet Malaga wine, which is then called "Malaga Quina". In Italy, the traditional flavoured wine Barolo Chinato is infused with quinine and local herbs, and is served as a digestif. In Canada and Italy, quinine is an ingredient in the carbonatedchinotto beverages Brio and San Pellegrino. In Scotland, the company A.G. Barr uses quinine as an ingredient in the carbonated and caffeinated beverageIrn-Bru. In Uruguay and Argentina, quinine is an ingredient of a PepsiCo tonic water named Paso de los Toros. In Denmark, it is used as an ingredient in the carbonated sports drink Faxe Kondi made by Royal Unibrew.
As a flavouring agent in drinks, quinine is limited to less than 83 parts per million in the United States, and 100 mg⁄l in the European Union.[66][67][68]
The bark of Remijia contains 0.5–2% of quinine. The bark is cheaper than bark of Cinchona. As it has an intense taste, it is used for making tonic water.[69]
From 1969, to 1992, the US Food and Drug Administration (FDA) received 157 reports of health problems related to quinine use, including 23 which had resulted in death.[70] In 1994, the FDA banned the marketing of over-the-counter quinine as a treatment for nocturnal leg cramps. PfizerPharmaceuticals had been selling the brand name Legatrin for this purpose. Also sold as a Softgel (by SmithKlineBeecham) as Q-vel[citation needed]. Doctors may still prescribe quinine, but the FDA has ordered firms to stop marketing unapproved drug products containing quinine. The FDA is also cautioning consumers about off-label use of quinine to treat leg cramps.[17][18] Quinine is approved for treatment of malaria, but was also commonly prescribed to treat leg cramps and similar conditions. Because malaria is life-threatening, the risks associated with quinine use are considered acceptable when used to treat that affliction.[71]
Though Legatrin was banned by the FDA for the treatment of leg cramps, the drug manufacturer URL Mutual has branded a quinine-containing drug named Qualaquin. It is marketed as a treatment for malaria and is sold in the United States only by prescription. In 2004, the CDC reported only 1,347 confirmed cases of malaria in the United States.[72]
↑World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
↑"Quinine Sulfate". International Drug Price Indicator Guide. Archived from the original on 22 January 2018. Retrieved 12 January 2016.
↑Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 47. ISBN9781284057560.
↑Dondorp A, Nosten F, Stepniewska K, Day N, White N (2005). "Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial". Lancet. 366 (9487): 717–25. doi:10.1016/S0140-6736(05)67176-0. PMID16125588.
↑DrugBank, ed. (24 February 2017). "Quinine". DrugBank. Archived from the original on 6 February 2017.
↑Foley M, Tilley L (February 1997). "Quinoline antimalarials: mechanisms of action and resistance". International Journal for Parasitology. 27 (2): 231–40. doi:10.1016/s0020-7519(96)00152-x. PMID9088993.
↑Treimer JF, Zenk MH (November 1979). "Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation". European Journal of Biochemistry. 101 (1): 225–33. doi:10.1111/j.1432-1033.1979.tb04235.x. PMID510306.
↑Mizukami H, Nordlöv H, Lee SL, Scott AI (August 1979). "Purification and properties of strictosidine synthetase (an enzyme condensing tryptamine and secologanin) from Catharanthus roseus cultured cells". Biochemistry. 18 (17): 3760–3. doi:10.1021/bi00584a018. PMID476085.
↑Medicinal natural products : a biosynthetic approach (3rdition ed.). Wiley. pp. 380–381. ISBN9780470742761.
↑O'Connor SE, Maresh JJ (August 2006). "Chemistry and biology of monoterpene indole alkaloid biosynthesis". Natural Product Reports. 23 (4): 532–47. doi:10.1039/b512615k. PMID16874388.
↑Kaufman, Teodoro S.; Rúveda, Edmundo A. (2005). "Die Jagd auf Chinin: Etappenerfolge und Gesamtsiege". Angewandte Chemie International Edition (in Deutsch). 117 (6): 876–907. doi:10.1002/ange.200400663.
↑"History of quinine:" Friedrich A. Flückiger and Daniel Hanbury, Pharmacographia: A history of the principal drugs of vegetable origin, met with in Great Britain and British India (London, England: Macmillan and Co., 1874), pages 302-331: Cortex CinchonæArchived 11 November 2014 at the Wayback Machine.
↑Hobbs, Kevin; West, David (2020). The Story of Trees : and how they changed the way we live. illustrated by Thibaud Hérem. London: Laurence King. p. 148. ISBN978-1-7862-7522-6.
Fernando I. Ortiz Crespo (1995) "Fragoso, Monardes and pre-Chinchonian knowledge of Cinchona," Archives of Natural History, 22 (2) : 169–181.
David C. Stuart, Dangerous Garden: The Quest for Plants to Change Our Lives (London, England: Frances Lincoln Ltd., 2004), p. 28.Archived 4 June 2016 at the Wayback Machine
Nicolás Monardes, Primera, segunda y tercera partes de la Historia Medicinal de las cosas que le traen de nuestras Indias Occidentales y que sirven en Medicina [First, second and third parts of the medical history of things that have been brought from the new West Indies and that are of use in medicine] (Seville, Spain: Fernando Diaz, 1580), pp. 74-75.Archived 8 May 2016 at the Wayback Machine From p. 74: "Del nuevo Reyno, traen una corteza, que dizen ser de un arbol, que es de mucha grandeza: el qual dize, que lleva unas hojas de forma de coraçon, y que no lleva fruto. Este arbol tiene una corteza gruessa, muy solida y dura, que en esto y en el color parece mucho a la corteza del palo que llaman Guayacan: en la superfiecie tiene una pelicula delgada blanquisca, quebrada por toda ella: tiene la corteza mas de un dedo de gruesso, solida, y pesada: la qual gustada tiene notable amargor, como el dela Genciana: tiene en el gusto notable astriction, con alguna aromaticidad, porque al fin del mascar la respira della buen olor. Tienen los Indios esta corteza en mucho, y usan de lla en todo genero de camaras, que sean con sangre, o sin ella. Los Españoles fatigados de aquesta enfermedad, por aviso de los Indios, han usado de aquesta corteza y han sanado muchos del los con ella. Toman della tanto como una hava pequeña hecha poluos, toma se en vino tinto, o en agua apropiada, como tienen la calentura, o mal: ha se de tomar por la mañana en ayunas, tres o quatro vezes: usando en lo demas, la orden y regimiento que conviene a los que tienen camaras." (From the new kingdom, there is brought a bark, which is said to be from a tree, which is very large: it is said that it bears leaves in the form of a heart, and that it bears no fruit. This tree has a thick bark, very solid and hard, that in this and in its color looks much like the bark of the tree that is called guayacán [i.e., lignum vitae]: on the surface, it has a thin, discontinuous whitish film throughout it: it has bark more than one finger thick, solid and heavy: which, when tasted, has a considerable bitterness, like that of the gentian: it has in its taste a considerable astringency, with some aromaticity, because at the end of chewing it, one breathes with a sweet odor. The Indians hold this bark in high regard, and use it for all sorts of diarrhea, that are with blood [i.e., bloody] and without it. The Spanish [who are] tired of this disease, on the advice of the Indians, have used this bark and have healed many of those with it. They take as much as a small bean, make [it into] powder, take it in red wine or in appropriate water, if they have fever or illness: it must be taken in the morning on an empty stomach, three or four times: otherwise, using the order and regimen that suits those who have diarrhea.)
Fragoso, Juan, Discursos de las cosas Aromáticas, árboles y frutales, y de otras muchas medicinas simples que se traen de la India y Oriental y sirven al uso de la medicina [Discourse on fragrant things, trees and fruits, as well as many other ordinary medicines that have been brought from India and the Orient and are of use to medicine] (Madrid, Spain: Francisco Sanchez, 1572), p. 35.Archived 5 May 2016 at the Wayback Machine From p. 35: "En el nuevo mundo ay un grande arbol que lleva las hojas a forma de coraçon, y carece de fruto. Tiene dos cortezas, la una gruessa muy solida dura, que assi en la sustancia como en el color es muy semejante al Guayacan: la otra es mas delgada y blaquezina, la qual es amarga con alguna estipticidad: y de mas desto es aromatica. Tienen la en mucho nuestros Indios, porque la usan contra qualesquier camaras, tomando de poluo peso de uno drama o poco mas, desatado en agua azerada, o vino tinto." (In the new world, there is a big tree that bears leaves in the form of a heart, and lacks fruit. It has two barks, one [is] thick, very solid, [and] hard, which in substance as well as in color is much like guayacan [i.e., lignum vitae]: the other is thinner and whitish, which is bitter with some styptic [i.e., astringent] quality: and besides this, it is aromatic. Our Indians regard it highly, because they use it against any diarrheas, taking a weight of a dram or a bit more of the powder, mixing it in mineral water, or red wine.)
↑Stephanie Pain (Sep 15, 2001). "The Countess and the cure". New Scientist. Archived from the original on December 20, 2019. Retrieved December 20, 2019.
↑Juan Eusebio Nieremberg and Alonso de Andrade, Varones Ilustres en Santidad, Letras, y Zelo de las Almas. De la Compañia de Jesus. [Illustrious men in holiness, letters, and zeal for souls. Of the Society of Jesus (i.e., Jesuits).] (Madrid, Spain: Joseph Fernandez de Buendia, 1666), vol. 5, Vida del devoto Hermano Agustin Salumbrino (The life of the devout Brother Agustin Salumbrino), pp. 612–628 ; see p. 612.Archived 22 May 2016 at the Wayback Machine From p. 612: "Nacio el Hermano Agustin Salumbrino el año de mil y quinientos y sesenta y quatro en la Ciudad de Flori en le Romania, … " (Brother Agustino Salumbrino was born in the year 1564 in the city of Flori [Note: This is an error; he was born in Forli.] in Emilia-Romagna, … )
Francisco Medina Rodríguez (July 2007) "Precisiones sobre la historia de la quina"Archived 4 March 2016 at the Wayback Machine (Details about the history of quinine), Reumatología Clínica, 3 (4) : 194–196. (in Spanish) From p. 195: "De hecho, aunque no esté dicha la ultima palabra, hay escritos jesuitas que mencionan que la quina llegó a Roma en 1632, con el provincial de las missiones jusuitas del Perú, el padre Alonso Messia Venegas, como su introductor, cuando trajo una muestra de la corteza para presentaria como primicia, quien había partido de Lima 2 años antes, ya que consta que estuvo en Sevilla en 1632, donde publicó uno de sus libros y siguió su camino hacia Roma en calidad de procurador." (In fact, however, it is not the last word: there are Jesuit writings that mention that quinine arrived in Rome in 1632, with the provincial of the Jesuit missions of Peru, Father Alonso Messia Venegas, as its introducer, when he brought a sample of the bark so that it could be presented as a novelty, which had left Lima two years before, since in fact it had been in Seville in 1632, where he published one of his books and [then] he went his way toward Rome in the capacity of procurator.)
Enrique Torres Saldamando, Los Antiguos Jesuitas del Perú [The old Jesuits of Peru] (Lima, Peru: Imprenta Liberal, 1882), pp. 180-191 ; see especially p. 181.Archived 10 April 2016 at the Wayback Machine (in Spanish) From p. 181: "Al siguiente año se dirigieron á Europa los Procuradores P. Alonso Messía Venegas y P. Hernando de Leon Garavito, llevando gran cantidad de la corteza de la quina, cuyo conocimiento extendieron por el mundo los jesuitas." (In the following year [i.e., 1631] there went to Europe the procurators Father Alonso Messia Venegas and Father Hernando de Leon Garavito, taking a great quantity of cinchona bark, knowledge of which the Jesuits spread throughout the world.)
Alberto Bailetti, Blog: "La Misión del Jesuita AgustÍn Salumbrino, la malaria y el árbol de quina"Archived 4 March 2016 at the Wayback Machine (The mission of the Jesuit Agustin Salumbrino, malaria and the quinine tree), Chapter 10: La Condensa de Chinchón (The countess of Chinchon). (in Spanish), excerpt: "A últimas horas de la tarde del treinta y uno de mayo de 1631 se hizo a la vela la armada real con dirección a Panamá llevando el millonario cargamento de oro y plata.
En una de las naves viajaban los procuradores jesuitas padres Alonso Messia y Hernando León Garavito custodiando los fardos con la corteza de quina en polvo, preparados por Salumbrino. Después de casi veinte días de navegación el inapreciable medicamento llegó a la ciudad de Panamá, donde fue descargado para cruzar en mulas el agreste camino del itsmo palúdico hasta Portobelo para seguir a Cartagena y la Habana, cruzar el Atlántico y llegar a Sanlúcar de Barrameda en Sevilla. … Finalmente siguió su camino a Roma y a su destino final el Hospital del Espíritu Santo."
(Late in the afternoon of the 31st of May, 1631, the royal armada set sail in the direction of Panama, carrying its multimillion [dollar] cargo of gold and silver.
On one of the ships traveled the Jesuit procurators Fathers Alonso Messia and Hernando León Garavito, guarding the cases of powdered cinchona bark, prepared by Salumbrino. After almost 20 days of sailing, medicine arrived in the city of Panama, where it was transloaded onto mules. It then traveled the malarial isthmus as far as Portobelo, thence to Cartagena [in Colombia] and Havana. It then traveled to Sanlúcar de Barrameda in Seville, [Spain]. … Finally it followed the road to Rome and to its final destination, the Hospital of the Holy Spirit.)
↑Rocco, Fiametta (2004). Quinine: malaria and the quest for a cure that changed the world. New York, NY: Perennial.
↑Pelletier PJ, Caventou JB (1820). "Recherches Chimiques sur les Quinquinas" [Continuation: Chemical Research on Quinquinas]. Annales de Chimie et de Physique (in French). Crochard. 15: 337–365. Archived from the original on 2017-01-26. Retrieved 2016-02-07.{{cite journal}}: CS1 maint: unrecognized language (link) The authors name quinine on page 348: " …, nous avons cru devoir la nommer quinine, pour la distinguer de la cinchonine par un nom qui indique également son origine." ( …, we thought that we should name it "quinine" in order to distinguish it from cinchonine by means of a name that also indicates its origin.)
↑Lt. Gen. Leonard D. Heaton, ed. (1963). "8". Preventive Medicine in World War II: Volume VI, Communicable Diseases: Malaria. Washington, D.C.: Department of the Army. pp. 401 and 434. Archived from the original on 29 January 2012.
↑BNF (80 ed.). BMJ Group and the Pharmaceutical Press. September 2020 – March 2021. p. 655-656. ISBN978-0-85711-369-6.{{cite book}}: CS1 maint: date format (link)
↑Magill A, Panosian C (July 2005). "Making antimalarial agents available in the United States". The New England Journal of Medicine. 353 (4): 335–7. doi:10.1056/NEJMp058167. PMID16000347.
↑Charming, Cheryl (2006). Miss Charming's Guide for Hip Bartenders and Wayout Wannabes. USA: Sourcebooks, Inc. p. 189. ISBN978-1-4022-0804-1.
↑Ballestero JA, Plazas PV, Kracun S, Gómez-Casati ME, Taranda J, Rothlin CV, Katz E, Millar NS, Elgoyhen AB (September 2005). "Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors". Molecular Pharmacology. 68 (3): 822–9. doi:10.1124/mol.105.014431. PMID15955868. {{cite journal}}: Unknown parameter |displayauthors= ignored (help)
↑"Food Additive Status List". U.S. Food and Drug Administration. U.S. Department of Health and Human Services. Archived from the original on 4 November 2017. Retrieved 9 October 2017.
↑Hobhouse, Henry (2004). Šest rostlin, které změnily svět (in Czech). Prague: Akademie věd České republiky. p. 59. ISBN978-80-200-1179-4.{{cite book}}: CS1 maint: unrecognized language (link)