The following is a list of notable unsolved problems grouped into broad areas of physics.[1]
Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.
Theory of everything: Is there a singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe?
Dimensionless physical constants: At the present time, the values of various dimensionless physical constants cannot be calculated; they can be determined only by physical measurement.[4][5] What is the minimum number of dimensionless physical constants from which all other dimensionless physical constants can be derived? Are dimensional physical constants necessary at all?
Quantum gravity: Can quantum mechanics and general relativity be realized as a fully consistent theory (perhaps as a quantum field theory)?[6] Is spacetime fundamentally continuous or discrete? Would a consistent theory involve a force mediated by a hypothetical graviton, or be a product of a discrete structure of spacetime itself (as in loop quantum gravity)? Are there deviations from the predictions of general relativity at very small or very large scales or in other extreme circumstances that flow from a quantum gravity mechanism?
Black holes, black hole information paradox, and black hole radiation: Do black holes produce thermal radiation, as expected on theoretical grounds?[8] Does this radiation contain information about their inner structure, as suggested by gauge–gravity duality, or not, as implied by Hawking's original calculation? If not, and black holes can evaporate away, what happens to the information stored in them (since quantum mechanics does not provide for the destruction of information)? Or does the radiation stop at some point leaving black hole remnants? Is there another way to probe their internal structure somehow, if such a structure even exists?
The cosmic censorship hypothesis and the chronology protection conjecture: Can singularities not hidden behind an event horizon, known as "naked singularities", arise from realistic initial conditions, or is it possible to prove some version of the "cosmic censorship hypothesis" of Roger Penrose which proposes that this is impossible?[9] Similarly, will the closed timelike curves which arise in some solutions to the equations of general relativity (and which imply the possibility of backwards time travel) be ruled out by a theory of quantum gravity which unites general relativity with quantum mechanics, as suggested by the "chronology protection conjecture" of Stephen Hawking?
Locality: Are there non-local phenomena in quantum physics?[13][14] If they exist, are non-local phenomena limited to the entanglement revealed in the violations of the Bell inequalities, or can information and conserved quantities also move in a non-local way? Under what circumstances are non-local phenomena observed? What does the existence or absence of non-local phenomena imply about the fundamental structure of spacetime? How does this elucidate the proper interpretation of the fundamental nature of quantum physics?
Axis of evil: Some large features of the microwave sky at distances of over 13 billion light years appear to be aligned with both the motion and orientation of the solar system. Is this due to systematic errors in processing, contamination of results by local effects, or an unexplained violation of the Copernican principle?
Fine-tuned universe: The values of the fundamental physical constants are in a narrow range necessary to support carbon-based life.[15][16][17] Is this because there exist other universes with different constants, or are our universe's constants the result of chance, or some other factor or process? (See also the Anthropic Principle.)
Problem of time: In quantum mechanics, time is a classical background parameter and the flow of time is universal and absolute. In general relativity time is one component of four-dimensional spacetime, and the flow of time changes depending on the curvature of spacetime and the spacetime trajectory of the observer. How can these two concepts of time be reconciled?[18]
Horizon problem: Why is the distant universe so homogeneous when the Big Bang theory seems to predict larger measurable anisotropies of the night sky than those observed? Cosmological inflation is generally accepted as the solution, but are other possible explanations such as a variable speed of light more appropriate?[20]
Dark flow: Is a non-spherically symmetric gravitational pull from outside the observable universe responsible for some of the observed motion of large objects such as galactic clusters in the universe?
Shape of the universe: What is the 3-manifold of comoving space, i.e., of a comoving spatial section of the universe, informally called the "shape" of the universe? Neither the curvature nor the topology is presently known, though the curvature is known to be "close" to zero on observable scales. The cosmic inflation hypothesis suggests that the shape of the universe may be unmeasurable, but, since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable; the Poincaré space; or another 3-manifold?
The largest structures in the universe are larger than expected. Current cosmological models say there should be very little structure on scales larger than a few hundred million light-years across, due to the expansion of the universe trumping the effect of gravity.[27] But the Sloan Great Wall is 1.38 billion light-years in length. And the largest structure currently known, the Hercules–Corona Borealis Great Wall, is up to 10 billion light-years in length. Are these actual structures or random density fluctuations? If they are real structures, they contradict the 'End of Greatness' hypothesis which asserts that at a scale of 300 million light-years, structures seen in smaller surveys are randomized to the extent that the smooth distribution of the universe is visually apparent.
Extra dimensions: Does nature have more than four spacetime dimensions? If so, what is their size? Are dimensions a fundamental property of the universe or an emergent result of other physical laws? Can we experimentally observe evidence of higher spatial dimensions?
Magnetic monopoles: Did particles that carry "magnetic charge" exist in some past, higher-energy epoch? If so, do any remain today? (Paul Dirac showed the existence of some types of magnetic monopoles would explain charge quantization.)[28]
Neutron lifetime puzzle: While the neutron lifetime has been studied for decades, there currently exists a lack of consilience on its exact value, due to different results from two experimental methods ("bottle" versus "beam").[29]
Proton decay and spin crisis: Is the proton fundamentally stable? Or does it decay with a finite lifetime as predicted by some extensions to the standard model?[30] How do the quarks and gluons carry the spin of protons?[31]
Supersymmetry: Is spacetime supersymmetry realized at TeV scale? If so, what is the mechanism of supersymmetry breaking? Does supersymmetry stabilize the electroweak scale, preventing high quantum corrections? Does the lightest supersymmetric particle (LSP) comprise dark matter?
Color confinement: The quantum chromodynamics (QCD) color confinement conjecture is that color charged particles (such as quarks and gluons) cannot be separated from their parent hadron without producing new hadrons.[32] Is it possible to provide an analytic proof of color confinement in any non-abelian gauge theory?
Generations of matter: Why are there three generations of quarks and leptons? Is there a theory that can explain the masses of particular quarks and leptons in particular generations from first principles (a theory of Yukawa couplings)?[33]
Neutrino mass: What is the mass of neutrinos, whether they follow Dirac or Majorana statistics? Is the mass hierarchy normal or inverted? Is the CP violating phase equal to 0?[34][35]
Reactor antineutrino anomaly: There is an anomaly in the existing body of data regarding the antineutrino flux from nuclear reactors around the world. Measured values of this flux appears to be only 94% of the value expected from theory.[36] It is unknown whether this is due to unknown physics (such as sterile neutrinos), experimental error in the measurements, or errors in the theoretical flux calculations.[37]
Anomalous magnetic dipole moment: Why is the experimentally measured value of the muon's anomalous magnetic dipole moment ("muon g−2") significantly different from the theoretically predicted value of that physical constant?[38]
Pentaquarks and other exotic hadrons: What combinations of quarks are possible? Why were pentaquarks so difficult to discover?[39] Are they a tightly-bound system of five elementary particles, or a more weakly-bound pairing of a baryon and a meson?[40]
Mu problem: problem of supersymmetric theories, concerned with understanding the parameters of the theory.
Koide formula: An aspect of the problem of particle generations. The sum of the masses of the three charged leptons, divided by the square of the sum of the roots of these masses, to within one standard deviation of observations, is . It is unknown how such a simple value comes about, and why it is the exact arithmetic average of the possible extreme values of 1⁄3 (equal masses) and 1 (one mass dominates).
Solar cycle: How does the Sun generate its periodically reversing large-scale magnetic field? How do other solar-like stars generate their magnetic fields, and what are the similarities and differences between stellar activity cycles and that of the Sun?[41] What caused the Maunder Minimum and other grand minima, and how does the solar cycle recover from a minima state?
Coronal heating problem: Why is the Sun's corona (atmosphere layer) so much hotter than the Sun's surface? Why is the magnetic reconnection effect many orders of magnitude faster than predicted by standard models?
Astrophysical jet: Why do only certain accretion discs surrounding certain astronomical objects emit relativistic jets along their polar axes? Why are there quasi-periodic oscillations in many accretion discs?[42] Why does the period of these oscillations scale as the inverse of the mass of the central object?[43] Why are there sometimes overtones, and why do these appear at different frequency ratios in different objects?[44]
Diffuse interstellar bands: What is responsible for the numerous interstellar absorption lines detected in astronomical spectra? Are they molecular in origin, and if so which molecules are responsible for them? How do they form?
Supermassive black holes: What is the origin of the M–sigma relation between supermassive black hole mass and galaxy velocity dispersion?[45] How did the most distant quasars grow their supermassive black holes up to 1010 solar masses so early in the history of the universe?
Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). Can the discrepancy between the curves be attributed to dark matter?
Kuiper cliff: Why does the number of objects in the Solar System's Kuiper belt fall off rapidly and unexpectedly beyond a radius of 50 astronomical units?
Flyby anomaly: Why is the observed energy of satellites flying by planetary bodies sometimes different by a minute amount from the value predicted by theory?
Galaxy rotation problem: Is dark matter responsible for differences in observed and theoretical speed of stars revolving around the centre of galaxies, or is it something else?
Supernovae: What is the exact mechanism by which an implosion of a dying star becomes an explosion?
p-nuclei: What astrophysical process is responsible for the nucleogenesis of these rare isotopes?
Ultra-high-energy cosmic ray:[20] Why is it that some cosmic rays appear to possess energies that are impossibly high, given that there are no sufficiently energetic cosmic ray sources near the Earth? Why is it that (apparently) some cosmic rays emitted by distant sources have energies above the Greisen–Zatsepin–Kuzmin limit?[46][20]
Rotation rate of Saturn: Why does the magnetosphere of Saturn exhibit a (slowly changing) periodicity close to that at which the planet's clouds rotate? What is the true rotation rate of Saturn's deep interior?[47]
Large-scale anisotropy: Is the universe at very large scales anisotropic, making the cosmological principle an invalid assumption? The number count and intensity dipole anisotropy in radio, NRAO VLA Sky Survey (NVSS) catalogue[48] is inconsistent with the local motion as derived from cosmic microwave background[49][50] and indicate an intrinsic dipole anisotropy. The same NVSS radio data also shows an intrinsic dipole in polarization density and degree of polarization[51] in the same direction as in number count and intensity. There are several other observations revealing large-scale anisotropy. The optical polarization from quasars shows polarization alignment over a very large scale of Gpc.[52][53][54] The cosmic-microwave-background data shows several features of anisotropy,[55][56][57][58] which are not consistent with the Big Bang model.
Age–metallicity relation in the Galactic disk: Is there a universal age–metallicity relation (AMR) in the Galactic disk (both "thin" and "thick" parts of the disk)? Although in the local (primarily thin) disk of the Milky Way there is no evidence of a strong AMR,[59] a sample of 229 nearby "thick" disk stars has been used to investigate the existence of an age–metallicity relation in the Galactic thick disk, and indicate that there is an age–metallicity relation present in the thick disk.[60][61] Stellar ages from asteroseismology confirm the lack of any strong age–metallicity relation in the Galactic disc.[62]
Fast radio bursts (FRBs): What causes these transient radio pulses from distant galaxies, lasting only a few milliseconds each? Why do some FRBs repeat at unpredictable intervals, but most do not? Dozens of models have been proposed, but none have been widely accepted.[64]
Are voids in space empty or consist of transparent matter?[65][66]
The "island of stability" in the proton vs. neutron number plot for heavy nuclei
Quantum chromodynamics: What are the phases of strongly interacting matter, and what roles do they play in the evolution of cosmos? What is the detailed partonic structure of the nucleons? What does QCD predict for the properties of strongly interacting matter? What determines the key features of QCD, and what is their relation to the nature of gravity and spacetime? Do glueballs exist? Do gluons acquire mass dynamically despite having a zero rest mass, within hadrons? Does QCD truly lack CP violations?
Quark–gluon plasma: Where is the onset of deconfinement: 1) as a function of temperature and chemical potentials? 2) as a function of relativistic heavy-ion collision energy and system size? What is the mechanism of energy and baryon-number stopping leading to creation of quark-gluon plasma in relativistic heavy-ion collisions? Why is sudden hadronization and the statistical-hadronization model a near-to-perfect description of hadron production from quark–gluon plasma? Is quark flavor conserved in quark–gluon plasma? Are strangeness and charm in chemical equilibrium in quark–gluon plasma? Does strangeness in quark–gluon plasma flow at the same speed as up and down quark flavours? Why does deconfined matter show ideal flow?
Strangelets: Does strange quark matter (Strangelet) exist as stable state?
Nuclei and nuclear astrophysics: Why is there a lack of convergence in estimates of the mean lifetime of a free neutron based on two separate—and increasingly precise—experimental methods? What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? What is the explanation for the EMC effect? What is the nature of exotic excitations in nuclei at the frontiers of stability and their role in stellar processes? What is the nature of neutron stars and dense nuclear matter? What is the origin of the elements in the cosmos? What are the nuclear reactions that drive stars and stellar explosions? What is the heaviest possible chemical element?
Turbulent flow: Is it possible to make a theoretical model to describe the statistics of a turbulent flow (in particular, its internal structures)?[46]
Upstream contamination: When pouring water from a higher container to a lower one, particles floating in the latter can climb upstream into the upper container. A definitive explanation for this phenomenon is still lacking.
Amorphous solids: What is the nature of the glass transition between a fluid or regular solid and a glassy phase? What are the physical processes giving rise to the general properties of glasses and the glass transition?[70][71]
Cryogenic electron emission: Why does the electron emission in the absence of light increase as the temperature of a photomultiplier is decreased?[72][73]
Sonoluminescence: What causes the emission of short bursts of light from imploding bubbles in a liquid when excited by sound?[74][75]
Metal whiskering: In electrical devices, some metallic surfaces may spontaneously grow fine metallic whiskers, which can lead to equipment failures. While compressive mechanical stress is known to encourage whisker formation, the growth mechanism has yet to be determined.
Plasma physics and fusion power: Fusion energy may potentially provide power from an abundant resource (e.g. hydrogen) without the type of radioactive waste that fission energy currently produces. However, can ionized gases (plasma) be confined long enough and at a high enough temperature to create fusion power? What is the physical origin of H-mode?[86]
The injection problem: Fermi acceleration is thought to be the primary mechanism that accelerates astrophysical particles to high energy. However, it is unclear what mechanism causes those particles to initially have energies high enough for Fermi acceleration to work on them.[87]
Stochasticity and robustness to noise in gene expression: How do genes govern our body, withstanding different external pressures and internal stochasticity? Certain models exist for genetic processes, but we are far from understanding the whole picture, in particular in development where gene expression must be tightly regulated.
Magnetoreception: How do animals (e.g. migratory birds) sense the Earth's magnetic field?
Protein structure prediction: How is the three-dimensional structure of proteins determined by the one-dimensional amino acid sequence? How can proteins fold on microsecond to second timescales when the number of possible conformations is astronomical and conformational transitions occur on the picosecond to microsecond timescale? Can algorithms be written to predict a protein's three-dimensional structure from its sequence? Do the native structures of most naturally occurring proteins coincide with the global minimum of the free energy in conformational space? Or are most native conformations thermodynamically unstable, but kinetically trapped in metastable states? What keeps the high density of proteins present inside cells from precipitating?[89]
Quantum biology: Can coherence be maintained in biological systems at timeframes long enough to be functionally important? Are there non-trivial aspects of biology or biochemistry that can only be explained by the persistance of coherence as a mechanism?
Interpretation of quantum mechanics: How does the quantum description of reality, which includes elements such as the superposition of states and wavefunction collapse or quantum decoherence, give rise to the reality we perceive?[46] Another way of stating this question regards the measurement problem: What constitutes a "measurement" which apparently causes the wave function to collapse into a definite state? Unlike classical physical processes, some quantum mechanical processes (such as quantum teleportation arising from quantum entanglement) cannot be simultaneously "local", "causal", and "real", but it is not obvious which of these properties must be sacrificed,[90] or if an attempt to describe quantum mechanical processes in these senses is a category error such that a proper understanding of quantum mechanics would render the question meaningless. Can a multiverse resolve it?
Arrow of time (e.g. entropy's arrow of time): Why does time have a direction? Why did the universe have such low entropy in the past, and time correlates with the universal (but not local) increase in entropy, from the past and to the future, according to the second law of thermodynamics?[46] Why are CP violations observed in certain weak force decays, but not elsewhere? Are CP violations somehow a product of the second law of thermodynamics, or are they a separate arrow of time? Are there exceptions to the principle of causality? Is there a single possible past? Is the present moment physically distinct from the past and future, or is it merely an emergent property of consciousness? What links the quantum arrow of time to the thermodynamic arrow?
Perform a loophole-free Bell test experiment (1970[91]–2015): In October 2015, scientists from the Kavli Institute of Nanoscience reported that the failure of the local hidden-variable hypothesis is supported at the 96% confidence level based on a "loophole-free Bell test" study.[92][93] These results were confirmed by two studies with statistical significance over 5 standard deviations which were published in December 2015.[94][95]
Existence of ball lightning (1638[96]–2014): In January 2014, scientists from Northwest Normal University in Lanzhou, China, published the results of recordings made in July 2012 of the optical spectrum of what was thought to be natural ball lightning made during the study of ordinary cloud–ground lightning on China's Qinghai Plateau.[97][98] At a distance of 900 m (3,000 ft), a total of 1.3 seconds of digital video of the ball lightning and its spectrum was made, from the formation of the ball lightning after the ordinary lightning struck the ground, up to the optical decay of the phenomenon. The recorded ball lightning is believed to be vaporized soil elements that then rapidly oxidize in the atmosphere. The validity of this hypothesis is still not clear.[98]
Numerical solution for binary black hole (1960s–2005): The numerical solution of the two body problem in general relativity was achieved after four decades of research. Three groups devised the breakthrough techniques in 2005 (annus mirabilis of numerical relativity).[103]
Cosmic age problem (1920s–1990s): The estimated age of the universe was around 3 to 8 billion years younger than estimates of the ages of the oldest stars in the Milky Way. Better estimates for the distances to the stars, and the recognition of the accelerating expansion of the universe, reconciled the age estimates.[citation needed]
Existence of pentaquarks (1964–2015): In July 2015, the LHCb collaboration at CERN identified pentaquarks in the Λ0 b→J/ψK−p channel, which represents the decay of the bottom lambda baryon (Λ0 b) into a J/ψ meson(J/ψ), a kaon(K− ) and a proton (p). The results showed that sometimes, instead of decaying directly into mesons and baryons, the Λ0 b decayed via intermediate pentaquark states. The two states, named P+ c(4380) and P+ c(4450), had individual statistical significances of 9 σ and 12 σ, respectively, and a combined significance of 15 σ—enough to claim a formal discovery. The two pentaquark states were both observed decaying strongly to J/ψp, hence must have a valence quark content of two up quarks, a down quark, a charm quark, and an anti-charm quark ( u u d c c ), making them charmonium-pentaquarks.[104]
Existence of quark-gluon plasma, a new phase of matter was discovered and confirmed in experiments at CERN-SPS (2000), BNL-RHIC (2005) and CERN-LHC (2010).[105]
Origin of mass of most elementary particles: Solved with the discovery of the Higgs boson, which implies the existence of the Higgs field giving mass to these particles.
Long-duration gamma-ray bursts (1993[107]–2003): Long-duration bursts are associated with the deaths of massive stars in a specific kind of supernova-like event commonly referred to as a collapsar. However, there are also long-duration GRBs that show evidence against an associated supernova, such as the Swift event GRB 060614.
Nature of quasars (1950s–1980s): The nature of quasars was not understood for decades.[114] They are now accepted as a type of active galaxy where the enormous energy output results from matter falling into a massive black hole in the centre of the galaxy.[115] Quasars produce jets within the core, expel them at the opposite poles, and then the jets are collimated by radiation from the surrounding accretion disk by the hollow charge effect.[116]
Saturn’s core spin was determined from its gravitational field.[117]
Existence of quark-gluon plasma, a new phase of matter was discovered and confirmed in experiments at CERN-SPS (2000), BNL-RHIC (2005) and CERN-LHC (2010).[105]
Existence of time crystals (2012–2016): The idea of a quantized time crystal was first theorized in 2012 by Frank Wilczek.[118][119] In 2016, Khemani et al.[120] and Else et al.[121] independently of each other suggested that periodically driven quantum spin systems could show similar behaviour. Also in 2016, Norman Yao at Berkeley and colleagues proposed a different way to create discrete time crystals in spin systems.[122] This was then used by two teams, a group led by Christopher Monroe at the University of Maryland and a group led by Mikhail Lukin at Harvard University, who were both able to show evidence for time crystals in the laboratory setting, showing that for short times the systems exhibited the dynamics similar to the predicted one.[123][124]
Photon underproduction crisis (2014–2015): This problem was resolved by Khaire and Srianand.[125] They show that a factor 2 to 5 times large metagalactic photoionization rate can be easily obtained using updated quasar and galaxy observations. Recent observations of quasars indicate that the quasar contribution to ultraviolet photons is a factor of 2 larger than previous estimates. The revised galaxy contribution is a factor of 3 larger. These together solve the crisis.
Hipparcos anomaly (1997[126]–2012): The High Precision Parallax Collecting Satellite (Hipparcos) measured the parallax of the Pleiades and determined a distance of 385 light years. This was significantly different from other measurements made by means of actual to apparent brightness measurement or absolute magnitude. The anomaly was due to the use of a weighted mean when there is a correlation between distances and distance errors for stars in clusters. It is resolved by using an unweighted mean. There is no systematic bias in the Hipparcos data when it comes to star clusters.[127]
Pioneer anomaly (1980–2012): There was a deviation in the predicted accelerations of the Pioneer 10 and 11 spacecraft as they left the Solar System.[46][20] It is believed that this is a result of previously unaccounted-for thermal recoil force.[129][130]
^Hammond, Richard (1 May 2008). "The Unknown Universe: The Origin of the Universe, Quantum Gravity, Wormholes, and Other Things Science Still Can't Explain". Proceedings of the Royal Society of London, Series A. 456 (1999): 1685.
^Womersley, J. (February 2005). "Beyond the Standard Model"(PDF). Symmetry Magazine. Archived from the original(PDF) on 17 October 2007. Retrieved 23 November 2010.
^ abWang, Qingdi; Zhu, Zhen; Unruh, William G. (11 May 2017). "How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe". Physical Review D. 95 (10): 103504. arXiv:1703.00543. Bibcode:2017PhRvD..95j3504W. doi:10.1103/PhysRevD.95.103504. S2CID119076077. This problem is widely regarded as one of the major obstacles to further progress in fundamental physics [...] Its importance has been emphasized by various authors from different aspects. For example, it has been described as a “veritable crisis” [...] and even “the mother of all physics problems” [...] While it might be possible that people working on a particular problem tend to emphasize or even exaggerate its importance, those authors all agree that this is a problem that needs to be solved, although there is little agreement on what is the right direction to find the solution.
^Fredenhagen, Klaus; Rejzner, Katarzyna (26 March 2015). "Perturbative Construction of Models of Algebraic Quantum Field Theory". arXiv:1503.07814 [math-ph].
^Wolchover, Natalie (13 February 2018). "Neutron Lifetime Puzzle Deepens, but No Dark Matter Seen". Quanta Magazine. Retrieved 31 July 2018. When physicists strip neutrons from atomic nuclei, put them in a bottle, then count how many remain there after some time, they infer that neutrons radioactively decay in 14 minutes and 39 seconds, on average. But when other physicists generate beams of neutrons and tally the emerging protons—the particles that free neutrons decay into—they peg the average neutron lifetime at around 14 minutes and 48 seconds. The discrepancy between the “bottle” and “beam” measurements has persisted since both methods of gauging the neutron’s longevity began yielding results in the 1990s. At first, all the measurements were so imprecise that nobody worried. Gradually, though, both methods have improved, and still they disagree.
^Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael; Lee Roberts, B.; Thomas Teubner; Graziano Venanzoni (2013). "The Muon (g-2) Theory Value: Present and Future". arXiv:1311.2198 [hep-ph].
^Condon, J. J.; Cotton, W. D.; Greisen, E. W.; Yin, Q. F.; Perley, R. A.; Taylor, G. B.; Broderick, J. J. (1998). "The NRAO VLA Sky Survey". The Astronomical Journal. 115 (5): 1693–1716. Bibcode:1998AJ....115.1693C. doi:10.1086/300337.
^Gilmore, G.; Asiri, H. M. (2011). "Open Issues in the Evolution of the Galactic Disks". Stellar Clusters & Associations: A RIA Workshop on Gaia. Proceedings. Granada: 280. Bibcode:2011sca..conf..280G.
^Casagrande, L.; Silva Aguirre, V.; Schlesinger, K. J.; Stello, D.; Huber, D.; Serenelli, A. M.; Scho Nrich, R.; Cassisi, S.; Pietrinferni, A.; Hodgkin, S.; Milone, A. P.; Feltzing, S.; Asplund, M. (2015). "Measuring the vertical age structure of the Galactic disc using asteroseismology and SAGA". Monthly Notices of the Royal Astronomical Society. 455 (1): 987–1007. arXiv:1510.01376. Bibcode:2016MNRAS.455..987C. doi:10.1093/mnras/stv2320. S2CID119113283.
^Doroshkevich, Andrei; Fong, Richard; Gottlober, Stefan; Mucket, Jan; Muller, Volker (1995). "The formation and evolution of large- and superlarge-scale structure in the universe - I: General Theory". Mon. Not. R. Astron. Soc.: https://arxiv.org/pdf/astro-ph/9505088.pdf.
^Mukherjee, Prabir K. (1998). "Landau Theory of Nematic-Smectic-A Transition in a Liquid Crystal Mixture". Molecular Crystals & Liquid Crystals. 312: 157–164. doi:10.1080/10587259808042438.
^Norris, David J. (2003). "The Problem Swept Under the Rug". In Klimov, Victor (ed.). Electronic Structure in Semiconductors Nanocrystals: Optical Experiment (in Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties). CRC Press. p. 97. ISBN978-0-203-91326-0.
^Campostrini, Massimo; Hasenbusch, Martin; Pelissetto, Andrea; Vicari, Ettore (6 October 2006). "Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods". Physical Review B. 74 (14): 144506. arXiv:cond-mat/0605083. doi:10.1103/PhysRevB.74.144506. S2CID118924734.
^Chester, Shai M.; Landry, Walter; Liu, Junyu; Poland, David; Simmons-Duffin, David; Su, Ning; Vichi, Alessandro (2020). "Carving out OPE space and precise $O(2)$ model critical exponents". Journal of High Energy Physics. 2020 (6): 142. arXiv:1912.03324. Bibcode:2020JHEP...06..142C. doi:10.1007/JHEP06(2020)142. S2CID208910721.
^ abKouveliotou, Chryssa; Meegan, Charles A.; Fishman, Gerald J.; Bhat, Narayana P.; Briggs, Michael S.; Koshut, Thomas M.; Paciesas, William S.; Pendleton, Geoffrey N. (1993). "Identification of two classes of gamma-ray bursts". The Astrophysical Journal. 413: L101. Bibcode:1993ApJ...413L.101K. doi:10.1086/186969.
^Shull, J. Michael, Britton D. Smith, and Charles W. Danforth. "The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing." The Astrophysical Journal 759.1 (2012): 23.
^Helled, Ravit; Galanti, Eli; Kaspi, Yohai (2015). "Saturn's fast spin determined from its gravitational field and oblateness". Nature. 520: 202–204. doi:10.1038/nature14278.