Archaeal translation is the process by which messenger RNA is translated into proteins in archaea. Not much is known on this subject, but on the protein level it seems to resemble eukaryotic translation. Most of the initiation, elongation, and termination factors in archaea have homologs in eukaryotes.[1] Shine-Dalgarno sequences only are found in a minority of genes for many phyla, with many leaderless mRNAs probably initiated by scanning.[2][3][4] The process of ABCE1 ATPase-based recycling is also shared with eukaryotes.[5] Being a prokaryote without a nucleus, archaea do perform transcription and translation at the same time like bacteria do.[6] ## References[edit] 1. ^ Saito K, Kobayashi K, Wada M, Kikuno I, Takusagawa A, Mochizuki M, et al. (November 2010). "Omnipotent role of archaeal elongation factor 1 alpha (EF1α in translational elongation and termination, and quality control of protein synthesis". Proceedings of the National Academy of Sciences of the United States of America. 107 (45): 19242–7. Bibcode:2010PNAS..10719242S. doi:10.1073/pnas.1009599107. PMC 2984191. PMID 20974926. 2. ^ Hernández, Greco; Jagus, Rosemary (2016-08-10). "Evolution of Translational Initiation: From Archaea to Eukarya". Evolution of the protein synthesis machinery and its regulation. Hernández, Greco,, Jagus, Rosemary. Switzerland. doi:10.1007/978-3-319-39468-8_4. ISBN 9783319394688. OCLC 956539514. 3. ^ Benelli, D; Londei, P (January 2011). "Translation initiation in Archaea: conserved and domain-specific features". Biochemical Society Transactions. 39 (1): 89–93. doi:10.1042/BST0390089. PMID 21265752. 4. ^ Nakagawa, S; Niimura, Y; Gojobori, T (20 April 2017). "Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine-Dalgarno sequence in prokaryotes". Nucleic Acids Research. 45 (7): 3922–3931. doi:10.1093/nar/gkx124. PMC 5397173. PMID 28334743. 5. ^ Becker, T; Franckenberg, S; Wickles, S; Shoemaker, CJ; Anger, AM; Armache, JP; Sieber, H; Ungewickell, C; Berninghausen, O; Daberkow, I; Karcher, A; Thomm, M; Hopfner, KP; Green, R; Beckmann, R (22 February 2012). "Structural basis of highly conserved ribosome recycling in eukaryotes and archaea". Nature. 482 (7386): 501–6. Bibcode:2012Natur.482..501B. doi:10.1038/nature10829. PMC 6878762. PMID 22358840. 6. ^ French, S. L.; Santangelo, T. J.; Beyer, A. L.; Reeve, J. N. (30 January 2007). "Transcription and Translation are Coupled in Archaea". Molecular Biology and Evolution. 24 (4): 893–895. doi:10.1093/molbev/msm007. PMID 17237472. * v * t * e Gene expression Introduction to genetics| * Genetic code * Central dogma * DNA → RNA → Protein * Special transfers * RNA→RNA * RNA→DNA * Protein→Protein Transcription| | Types| * Bacterial * Archaeal * Eukaryotic | Key elements| * Transcription factor * RNA polymerase * Promoter Post-transcription| * Precursor mRNA (pre-mRNA / hnRNA) * 5' capping * Splicing * Polyadenylation * Histone acetylation and deacetylation Translation| | Types| * Bacterial * Archaeal * Eukaryotic | Key elements| * Ribosome * Transfer RNA (tRNA) * Ribosome-nascent chain complex (RNC) * Post-translational modification Regulation| * Epigenetic * imprinting * Transcriptional * Gene regulatory network * cis-regulatory element * lac operon * Post-transcriptional * sequestration (P-bodies) * alternative splicing * microRNA * Translational * Post-translational * reversible * irreversible Influential people| * François Jacob * Jacques Monod * v * t * e Protein biosynthesis: translation (bacterial, archaeal, eukaryotic) Proteins| | Initiation factor| | Bacterial| * IF1 * IF2 * IF3 | Archaeal| * aIF1 * aIF2 * aIF5 * aIF6 Eukaryotic| | eIF1| * eIF1 * B * family * eIF1A * Y | eIF2| * α * β * γ * eIF2B * 1 * 2 * 3 * 4 * 5 * kinase * eIF2A * eIF2D eIF3| * A * B * C * D * E * F * G * H * I * J * K * L * M eIF4| * A * 1 * 2 * 3 * E1 * 2 * 3 * G * 1 * 2 * 3 * B * H eIF5| * EIF5 * EIF5A * 2 * 5B eIF6| * EIF6 Elongation factor| | Bacterial/​Mitochondrial| * EF-Tu * EF-Ts * EF-G * EF-4 * EF-P * TSFM * GFM1 * GFM2 | Archaeal/​Eukaryotic| * a/eEF-1 * A1 * 2 * 3 * B * P1 * P2 * P3 * D * E * G * a/eEF-2 Release factor| * Class 1 * eRF1 * Class 2/RF3 * GSPT1 * GSPT2 Ribosomal Proteins| | Cytoplasmic| | 60S subunit| * RPL3 * RPL4 * RPL5 * RPL6 * RPL7 * RPL7A * RPL8 * RPL9 * RPL10 * RPL10A * RPL10-like * RPL11 * RPL12 * RPL13 * RPL13A * RPL14 * RPL15 * RPL17 * RPL18 * RPL18A * RPL19 * RPL21 * RPL22 * RPL23 * RPL23A * RPL24 * RPL26 * RPL27 * RPL27A * RPL28 * RPL29 * RPL30 * RPL31 * RPL32 * RPL34 * RPL35 * RPL35A * RPL36 * RPL36A * RPL37 * RPL37A * RPL38 * RPL39 * RPL40 * RPL41 * RPLP0 * RPLP1 * RPLP2 * RRP15-like * RSL24D1 | 40S subunit| * RPSA * RPS2 * RPS3 * RPS3A * RPS4 (RPS4X, RPS4Y1, RPS4Y2) * RPS5 * RPS6 * RPS7 * RPS8 * RPS9 * RPS10 * RPS11 * RPS12 * RPS13 * RPS14 * RPS15 * RPS15A * RPS16 * RPS17 * RPS18 * RPS19 * RPS20 * RPS21 * RPS23 * RPS24 * RPS25 * RPS26 * RPS27 * RPS27A * RPS28 * RPS29 * RPS30 * RACK1 Mitochondrial| | 39S subunit| * MRPL1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 * 24 * 25 * 26 * 27 * 28 * 29 * 30 * 31 * 32 * 33 * 34 * 35 * 36 * 37 * 38 * 39 * 40 * 41 * 42 | 28S subunit| * MRPS1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 * 24 * 25 * 26 * 27 * 28 * 29 * 30 * 31 * 32 * 33 * 34 * 35 Other concepts| * Aminoacyl tRNA synthetase * Reading frame * Start codon * Stop codon * Shine-Dalgarno sequence/Kozak consensus sequence This molecular biology article is a stub. You can help Wikipedia by expanding it. | * v * t * e *[v]: View this template *[t]: Discuss this template *[e]: Edit this template